Causal Network Inference from Gene Transcriptional Time Series Response to Glucocorticoids

bioRxiv(2019)

引用 12|浏览40
暂无评分
摘要
Abstract Gene regulatory network inference is essential to uncover complex relationships among gene pathways and inform downstream experiments, ultimately paving the way for regulatory network re-engineering. Network inference from transcriptional time series data requires accurate, interpretable, and efficient determination of causal relationships among thousands of genes. Here, we develop Bootstrap Elastic net regression from Time Series (BETS), a statistical framework based on Granger causality for the recovery of a directed gene network from transcriptional time series data. BETS uses elastic net regression and stability selection from bootstrapped samples to infer causal relationships among genes. BETS is highly parallelized, enabling efficient analysis of large transcriptional data sets. We show competitive accuracy on a community benchmark, the DREAM4 100-gene network inference challenge, where BETS is one of the fastest among methods of similar performance but additionally infers whether the causal effects are activating or inhibitory. We apply BETS to transcriptional time series data of 2, 768 differentially-expressed genes from A549 cells exposed to glucocorticoids over a period of 12 hours. We identify a network of 2, 768 genes and 31, 945 directed edges (FDR ≤ 0.2). We validate inferred causal network edges using two external data sources: overexpression experiments on the same glucocorticoid system, and genetic variants associated with inferred edges in primary lung tissue in the Genotype-Tissue Expression (GTEx) v6 project. BETS is freely available as an open source software package at https://github.com/lujonathanh/BETS.
更多
查看译文
关键词
gene regulation,network inference,directed networks,bulk RNA-seq,glucocorticoids,vector autoregression,Granger causality,time series,stability selection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要