Gamma Rays and Gravitational Waves.

arXiv: High Energy Astrophysical Phenomena(2019)

引用 22|浏览117
暂无评分
摘要
The first multimessenger observation of a neutron star merger was independently detected in gamma-rays by Fermi-GBM and INTEGRAL SPI-ACS and gravitational waves by Advanced LIGO and Advanced Virgo. Gravitational waves are emitted from systems with accelerating quadrupole moments, and detectable sources are expected to be compact objects. Nearly all distant astrophysical gamma-ray sources are compact objects. Therefore, serendipitous observations of these two messengers will continue to uncover the sources of gravitational waves and gamma-rays, and enable multimessenger science across the Astro2020 thematic areas. This requires upgrades to the ground-based gravitational wave network and ~keV-MeV gamma-ray coverage for observations of neutron star mergers, and broadband coverage in both gravitational waves and gamma-rays to monitor other expected joint sources.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要