An Innovative Genetic Algorithm for a Multi-Objective Optimization of Two-Dimensional Cutting-Stock Problem

APPLIED ARTIFICIAL INTELLIGENCE(2019)

引用 11|浏览12
暂无评分
摘要
This paper addressed an important variant of two-dimensional cutting stock problem. The objective was not only to minimize trim loss, as in traditional cutting stock problems, but rather to minimize the number of machine setups. This additional objective is crucial for the life of the machines and affects both the time and the cost of cutting operations. Since cutting stock problems are well known to be NP-hard, we proposed an approximate method to solve this problem in a reasonable time. This approach differs from the previous works by generating a front with many interesting solutions. By this way, the decision maker or production manager can choose the best one from the set based on other additional constraints. This approach combined a genetic algorithm with a linear programming model to estimate the optimal Pareto front of these two objectives. The effectiveness of this approach was evaluated through a set of instances collected from the literature. The experimental results for different-size problems show that this algorithm provides Pareto fronts very near to the optimal ones.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要