Previsione del massimo consumo di ossigeno in una popolazione generale

MEDICINA DELLO SPORT(2017)

引用 1|浏览7
暂无评分
摘要
BACKGROUND: The assessment of cardiorespiratory fitness using a gold-standard protocol, or group-specific estimates, cannot feasibly be managed by health and physical training professionals when dealing with different exercise disciplines and individual needs. Thus, the aim was to describe the parameters which offer a better explanation of the variance in maximal oxygen uptake (VO2max) in a large mixed population. METHODS: A sample of 784 subjects (practitioners from different sport disciplines, composed of 656 men: 24 +/- 8 years, 69 +/- 10 kg and 175 +/- 8 cm; and 128 women: 21 +/- 7 years, 57 +/- 9 kg and 164 +/- 8 cm) performed a progressive test to assess VO2max on a cycle-ergometer or treadmill, as freely chosen by the participants. Two multiple linear stepwiseregression models were applied to the VO2max estimation in a sorted exploratory sample (70%): with anthropometrics plus maximal heart rate (HRmax) for model 1 (MOD1); and including maximal workload (WLmax) for model 2 (MOD2). Both models were evaluated in the validatory sample (30%) by the constant error (CE), Pearson coefficient (r), standard error of estimate (SEE), total error (TE), and adjusted r(2). RESULTS: The MOD2 equation [VO2max= 522.475 - 8.280 (WLmax) - 368.135 (sex) + 12.872 (bw) + 5.879 (HRmax)] proved to be statistically more robust than the MOD1 equation (SEE: 8.4 and 10.1%; CE: 1.0 and 6.0%; TE: 9.0 and 17.2%; and adjusted r(2): 0.87 and 0.54, respectively). CONCLUSIONS: A highly accurate model was provided for predicting VO2max in a mixed-population, when including maximal workload together with HRmax, body weight, age and gender data in the estimate.
更多
查看译文
关键词
Work capacity evaluation,Oxygen consumption,Sports,Population groups,Regression analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要