High-Performance Vision-Based Navigation on SoC FPGA for Spacecraft Proximity Operations

IEEE Transactions on Circuits and Systems for Video Technology(2020)

引用 26|浏览151
暂无评分
摘要
Future autonomous spacecraft rendezvous with uncooperative or unprepared objects will be enabled by visionbased navigation, which imposes great computational challenges. Targeting short duration missions in low Earth orbit, this paper develops high-performance avionics supporting custom computer vision algorithms of increased complexity for satellite pose tracking. At algorithmic level, we track 6D pose by rendering a depth image from an object mesh model and robustly matching edges detected in the depth and intensity images. At system level, we devise an architecture to exploit the structure of commercial System-on-Chip FPGAs, i.e., Zynq7000, and the benefits of tightly coupling VHDL accelerators with CPU-based functions. At implementation level, we employ our custom HW/SW codesign methodology and an elaborate combination of digital circuit design techniques to optimize and map efficiently all functions to a compact embedded device. Providing significant performance per Watt improvement, the resulting VBN system achieves a throughput of 10–14 FPS for 1 Mpixel images, with only 4.3 Watts mean power and 1U size, while tracking ENVISAT in real-time with only 0.5% mean positional error.
更多
查看译文
关键词
Space vehicles,Field programmable gate arrays,Aerospace electronics,Target tracking,Pose estimation,Satellites,Performance evaluation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要