Thermally Stable Perovskite Solar Cells by Systematic Molecular Design of the Hole-Transport Layer

ACS energy letters(2019)

引用 69|浏览39
暂无评分
摘要
With metal halide perovskite solar cells (PSCs) now reaching device efficiencies u003e23%, more emphasis must now shift toward addressing their device stability. Recently, a triarylamine-based organic hole-transport material (HTM) doped with its oxidized salt analogue (EH44/EH44-ox) led to unencapsulated PSCs with high stability in ambient conditions. Here we report criteria for triarylamine-based organic HTMs formulated with stable oxidized salts as hole-transport layer (HTL) for increased PSC thermal stability. The triarylamine-based dopants must contain at least two para-electron-donating groups for radical cation stabilization to prevent impurity formation that leads to reduced PSC performance. The stability of unencapsulated devices prepared using these new HTMs stressed under constant load and illumination far outperforms that of both EH44/EH44-ox and Li+-doped spiro-OMeTAD controls at 50 °C. Furthermore, the ability to mix and match these dopants with a nonidentical small-molecule-based HTL matrix broa...
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要