A Generic Soft Encapsulation Strategy For Stretchable Electronics

ADVANCED FUNCTIONAL MATERIALS(2019)

引用 102|浏览80
暂无评分
摘要
Recent progress in stretchable forms of inorganic electronic systems has established a route to new classes of devices, with particularly unique capabilities in functional biointerfaces, because of their mechanical and geometrical compatibility with human tissues and organs. A reliable approach to physically and chemically protect the electronic components and interconnects is indispensable for practical applications. Although recent reports describe various options in soft, solid encapsulation, the development of approaches that do not significantly reduce the stretchability remains an area of continued focus. Herein, a generic, soft encapsulation strategy is reported, which is applicable to a wide range of stretchable interconnect designs, including those based on two-dimensional (2D) serpentine configurations, 2D fractal-inspired patterns, and 3D helical configurations. This strategy forms the encapsulation while the system is in a prestrained state, in contrast to the traditional approach that involves the strain-free configuration. A systematic comparison reveals that substantial enhancements (e.g., approximate to 6.0 times for 2D serpentine, approximate to 4.0 times for 2D fractal, and approximate to 2.6 times for 3D helical) in the stretchability can be achieved through use of the proposed strategy. Demonstrated applications in highly stretchable light-emitting diodes systems that can be mounted onto complex curvilinear surfaces illustrate the general capabilities in functional device systems.
更多
查看译文
关键词
buckling, encapsulation method, soft elastomers, stretchable electronics, two-stage encapsulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要