Asynchronous non-invasive high-speed BCI speller with robust non-control state detection

SCIENTIFIC REPORTS(2019)

引用 22|浏览3
暂无评分
摘要
Brain-Computer Interfaces (BCIs) enable users to control a computer by using pure brain activity. Recent BCIs based on visual evoked potentials (VEPs) have shown to be suitable for high-speed communication. However, all recent high-speed BCIs are synchronous, which means that the system works with fixed time slots so that the user is not able to select a command at his own convenience, which poses a problem in real-world applications. In this paper, we present the first asynchronous high-speed BCI with robust distinction between intentional control (IC) and non-control (NC), with a nearly perfect NC state detection of only 0.075 erroneous classifications per minute. The resulting asynchronous speller achieved an average information transfer rate (ITR) of 122.7 bit/min using a 32 target matrix-keyboard. Since the method is based on random stimulation patterns it allows to use an arbitrary number of targets for any application purpose, which was shown by using an 55 target German QWERTZ-keyboard layout which allowed the participants to write an average of 16.1 (up to 30.7) correct case-sensitive letters per minute. As the presented system is the first asynchronous high-speed BCI speller with a robust non-control state detection, it is an important step for moving BCI applications out of the lab and into real-life.
更多
查看译文
关键词
Electroencephalography (EEG),self-paced,EEG2Code
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要