Separator-based Pruned Dynamic Programming for Steiner Tree

THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2019)

引用 30|浏览7
暂无评分
摘要
Steiner tree is a classical NP-hard problem that has been extensively studied both theoretically and empirically. In theory, the fastest approach for inputs with a small number of terminals uses the dynamic programming, but in practice, state-of-the-art solvers are based on the branch-and-cut method. In this paper, we present a novel separator-based pruning technique for speeding up a theoretically fast DP algorithm. Our empirical evaluation shows that our pruned DP algorithm is quite effective against real-world instances admitting small separators, scales to more than a hundred terminals, and is competitive with a branch-and-cut solver.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要