Fault Detection and Diagnosis using Multivariate Statistical Techniques in a Wastewater Treatment Plant.* *This work was supported in part by the national research agency of Spain (CICYT) through the project DPI2006-15716-C02-02 and the regional government of Castilla y Leon through the project VA052A07

IFAC Proceedings Volumes(2009)

引用 18|浏览13
暂无评分
摘要
Abstract Abstract In this paper Principal Components Analysis (PCA) is used for detecting faults in a simulated wastewater treatment plant (WWTP). Diagnosis tasks are treated using Fisher discriminant analysis (FDA). Both techniques are multivariate statistical techniques used in multivariate statistical process control (MSPC) and fault detection and isolation (FDI) perspectives. PCA reduces the dimensionality of the original historical data by projecting it onto a lower dimensionality space. It obtains the principal causes of variability in a process. If some of these causes change, it can be due to a fault in the process. FDA provides an optimal lower dimensional representation in terms of a discriminant between classes of data, where, in this context of fault diagnosis, each class corresponds to data collected during a specific and known fault. A discriminant function is applied to diagnose faults using data collected from the plant.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要