Proteomic and Genomic Signatures of Repeat-instability in Cancer and Adjacent Normal Tissues

bioRxiv(2018)

引用 10|浏览31
暂无评分
摘要
Repetitive sequences are hotspots of evolution at multiple levels. However, due to technical difficulties involved in their assembly and analysis, the role of repeats in tumor evolution is poorly understood. We developed a rigorous motif-based methodology to quantify variations in the repeat content of proteomes and genomes, directly from proteomic and genomic raw sequence data, and applied it to analyze a wide range of tumors and normal tissues. We identify high similarity between the repeat-instability in tumors and their patient-matched normal tissues, but also tumor-specific signatures, both in protein expression and in the genome, that strongly correlate with cancer progression and robustly predict the tumorigenic state. In a patient, the hierarchy of genomic repeat instability signatures accurately reconstructs tumor evolution, with primary tumors differentiated from metastases. We find an inverse relationship between repeat-instability and point mutation load, within and across patients, and independently of other somatic aberrations. Thus, repeat-instability is a distinct, transient and compensatory adaptive mechanism in tumor evolution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要