Melamine Foam-Derived N-Doped Carbon Framework and Graphene-Supported LiFePO4 Composite for High Performance Lithium-Ion Battery Cathode Material

ACS Sustainable Chemistry & Engineering(2019)

引用 28|浏览6
暂无评分
摘要
The relatively low ionic and electronic conductivities of lithium iron phosphate (LFP) are barriers in its utilization in electric vehicles (EVs) and smart grids. In this study, a composite of N-doped carbon-coated LFP (NCL) nanoparticles attached to a reduced graphene oxide (rGO)-wrapped N-doped carbon framework was synthesized using polydopamine as the binding agent as well as the carbon coating source and was studied as the cathode material for a lithium-ion battery. The N-doped carbon framework provided a high surface area for attaching the LFP particles, pore space for Li ion migration, and network for high electrical conductivity. LFP nanoparticles were densely attached to a N-doped carbon framework due to the interaction between rGO and polydopamine. The porous and active material-interconnected structure enabled rapid lithium-ion and electron transport for improved rate performance. Furthermore, the high interaction between rGO and polydopamine could help to achieve long cyclic stability of the el...
更多
查看译文
关键词
LiFePO4,N-doped carbon framework,Carbon network,Graphene,Polydopamine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要