Skeleton-Based Action Recognition with Gated Convolutional Neural Networks

IEEE Transactions on Circuits and Systems for Video Technology(2019)

引用 115|浏览64
暂无评分
摘要
For skeleton-based action recognition, most of the existing works used recurrent neural networks. Using convolutional neural networks (CNNs) is another attractive solution considering their advantages in parallelization, effectiveness in feature learning, and model base sufficiency. Besides these, skeleton data are low-dimensional features. It is natural to arrange a sequence of skeleton features chronologically into an image, which retains the original information. Therefore, we solve the sequence learning problem as an image classification task using CNNs. For better learning ability, we build a classification network with stacked residual blocks and having a special design called linear skip gated connection which can benefit information propagation across multiple residual blocks. When arranging the coordinates of body joints in one frame into a skeleton feature, we systematically investigate the performance of part-based, chain-based, and traversal-based orders. Furthermore, a fully convolutional permutation network is designed to learn an optimized order for data rearrangement. Without any bells and whistles, our proposed model achieves state-of-the-art performance on two challenging benchmark datasets, outperforming existing methods significantly.
更多
查看译文
关键词
Skeleton,Logic gates,Task analysis,Recurrent neural networks,Matrix converters,Three-dimensional displays,Convolutional neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要