Brain X chromosome inactivation is not random and can protect from paternally inherited neurodevelopmental disease

bioRxiv(2021)

Cited 0|Views42
No score
Abstract
Non-random (skewed) X chromosome inactivation (XCI) in the female brain can ameliorate X-linked phenotypes, though clinical studies typically consider 80-90% skewing favoring the healthy allele as necessary for this effect[1][1]–[10][2]. Here we quantify for the first time whole-brain XCI at single-cell resolution and discover a preferential inactivation of paternal to maternal X at ∼60:40 ratio, which surprisingly impacts disease penetrance. In Fragile-X-syndrome mouse model, Fmr1-KO allele transmitted maternally in ∼60% brain cells causes phenotypes, but paternal transmission in ∼40% cells is unexpectedly tolerated. In the affected maternal Fmr1-KO(m)/+ mice, local XCI variability within distinct brain networks further determines sensory versus social manifestations, revealing a stochastic source of X-linked phenotypic diversity. Taken together, our data show that a modest ∼60% bias favoring the healthy allele is sufficient to ameliorate X-linked phenotypic penetrance, suggesting that conclusions of many clinical XCI studies using the 80-90% threshold should be re-evaluated. Furthermore, the paternal origin of the XCI bias points to a novel evolutionary mechanism acting to counter the higher rate of de novo mutations in male germiline[11][3]–[16][4]. Finally, the brain capacity to tolerate a major genetic lesion in ∼40% cells is also relevant for interpreting other neurodevelopmental genetic conditions, such as brain somatic mosaicism. ### Competing Interest Statement The authors have declared no competing interest. [1]: #ref-1 [2]: #ref-10 [3]: #ref-11 [4]: #ref-16
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined