Mechanical properties of Al/ω-Al-Cu-Fe composites synthesized by the SPS technique

Materials Characterization(2018)

引用 17|浏览32
暂无评分
摘要
Al/40 vol%ω-Al-Cu-Fe composites were produced from Al powder and i-Al-Cu-Fe quasi-crystalline particles using spark plasma sintering (SPS) technique. The mechanical properties of the composite were evaluated over the temperature range 293 K–823 K by performing compression tests at constant strain rate. The temperature dependence of the σ0,2% yield stress gives evidence of two temperature regimes with a transition in the range 473 K–523 K. The decrease of σ0,2% with increasing temperature, more pronounced in the low temperature regime, indicates that the two temperature regimes correspond to two different thermally activated deformation mechanisms. Based on microstructural analyses of the Al matrix, where plastic deformation takes place, the different strengthening contributions are discussed and the results are finally compared to those obtained for composites produced by hot isostatic pressing (HIP), for which the σ0,2% temperature dependence is similar. In the low temperature regime, the σ0.2% stress of the SPS composites is higher than that of the HIP composites. In this temperature regime, the stress difference is mainly ascribed to the different reinforcement phases present in the Al matrix. In the high temperature regime, the temperature dependence of σ0.2% is comparable for the two composites whatever the processing route: load transfer is thus the main strengthening mechanism, which is similar for the two Al/ω-Al-Cu-Fe composites, the temperature dependence being ascribed to cross slip and climb processes.
更多
查看译文
关键词
Metal matrix composite,Al-Cu-Fe alloy,Phase transformation,Mechanical properties,Microstructure,Spark plasma sintering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要