Impact of concomitant Y and Mn substitution on superconductivity in La1−yYyFe1−xMnxAsO0.89F0.11

Physical Review B(2018)

引用 4|浏览32
暂无评分
摘要
We discuss the impact of concomitant substitution of Fe by Mn and La by Y in optimally F-doped LaFeAsO0.89F0.11. Mn has a known poisoning effect on superconductivity which is particularly strong in the La1111 system, where 0.2% of Mn were reported to completely suppress superconductivity. Through isovalent substitution of La by the much smaller Y we are able to inflict chemical pressure on the structure, which we show is stabilizing the superconducting state, resulting in a drastically larger amount of Mn needed to completely quench superconductivity. Interestingly, we find that the lattice parameter c changes significantly even for small amounts of Mn substitution within a series, which is unexpected taking only the differences between ionic radii into account. We discuss our findings in the light of electron localization caused by small amounts of paramagnetic Mn impurities in La1-yYyFe1-xMnxAsO0.89F0.11 also indicated by resistivity and MoBbauer measurements.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要