The dynamics of surges in the 3 February 2015 avalanches in Vallée de la Sionne.

JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE(2016)

引用 34|浏览11
暂无评分
摘要
Five avalanches were artificially released at the Vallee de la Sionne test site in the west of Switzerland on 3 February 2015 and recorded by the GEOphysical flow dynamics using pulsed Doppler radAR Mark3 radar system. The radar beam penetrates the dilute powder cloud and measures reflections from the underlying denser avalanche features allowing the tracking of the flow at 111Hz with 0.75m downslope resolution. The data show that the avalanches contain many internal surges. The large or major surges originate from the secondary release of slabs. These slabs can each contain more mass than the initial release, and thus can greatly affect the flow dynamics, by unevenly distributing the mass. The small or minor surges appear to be a roll wave-like instability, and these can greatly influence the front dynamics as they can repeatedly overtake the leading edge. We analyzed the friction acting on the fronts of minor surges using a Voellmy-like, simple one-dimensional model with frictional resistance and velocity-squared drag. This model fits the data of the overall velocity, but it cannot capture the dynamics and especially the slowing of the minor surges, which requires dramatically varying effective friction. Our findings suggest that current avalanche models based on Voellmy-like friction laws do not accurately describe the physics of the intermittent frontal region of large mixed avalanches. We suggest that these data can only be explained by changes in the snow surface, such as the entrainment of the upper snow layers and the smoothing by earlier flow fronts.
更多
查看译文
关键词
snow avalanches,surges,FMCW radar,secondary releases,frontal dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要