Role Of Phosphodiesterase 4 Expression In The Epac1 Signaling-Dependent Skeletal Muscle Hypertrophic Action Of Clenbuterol

PHYSIOLOGICAL REPORTS(2016)

引用 14|浏览14
暂无评分
摘要
Clenbuterol (CB), a selective beta(2)-adrenergic receptor (AR) agonist, induces muscle hypertrophy and counteracts muscle atrophy. However, it is paradoxically less effective in slow-twitch muscle than in fast-twitch muscle, though slow-twitch muscle has a greater density of beta-AR. We recently demonstrated that Epac1 (exchange protein activated by cyclic AMP [cAMP] 1) plays a pivotal role in beta(2)-AR-mediated masseter muscle hypertrophy through activation of the Akt and calmodulin kinase II (CaMKII)/histone deacetylase 4 (HDAC4) signaling pathways. Here, we investigated the role of Epac1 in the differential hypertrophic effect of CB using tibialis anterior muscle (TA; typical fast-twitch muscle) and soleus muscle (SOL; typical slow-twitch muscle) of wild-type (WT) and Epac1-null mice (Epac1KO). The TA mass to tibial length (TL) ratio was similar in WT and Epac1KO at baseline and was significantly increased after CB infusion in WT, but not in Epac1KO. The SOL mass to TL ratio was also similar in WT and Epac1KO at baseline, but CB-induced hyper-trophy was suppressed in both mice. In order to understand the mechanism involved, we measured the protein expression levels of beta-AR signaling-related molecules, and found that phosphodiesterase 4 (PDE4) expression was 12-fold greater in SOL than in TA. These results are consistent with the idea that increased PDE4-mediated cAMP hydrolysis occurs in SOL compared to TA, resulting in a reduced cAMP concentration that is insufficient to activate Epac1 and its downstream Akt and CaMKII/HDAC4 hypertrophic signaling pathways in SOL of WT. This scenario can account for the differential effects of CB on fast-and slow-twitch muscles.
更多
查看译文
关键词
Beta-adrenoceptor, hypertrophy, signal transduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要