TFE3 Xp11.2 translocation renal cell carcinoma mouse model reveals novel therapeutic targets and identifies GPNMB as a diagnostic marker for human disease.

MOLECULAR CANCER RESEARCH(2019)

引用 29|浏览32
暂无评分
摘要
Renal cell carcinoma (RCC) associated with Xp11.2 translocation (TFE3-RCC) has been recently defined as a distinct subset of RCC classified by characteristic morphology and clinical presentation. The Xp11 translocations involve the TFE3 transcription factor and produce chimeric TFE3 proteins retaining the basic helix-loop-helix leucine zipper structure for dimerization and DNA binding suggesting that chimeric TFE3 proteins function as oncogenic transcription factors. Diagnostic biomarkers and effective forms of therapy for advanced cases of TFE3-RCC are as yet unavailable. To facilitate the development of molecular based diagnostic tools and targeted therapies for this aggressive kidney cancer, we generated a translocation RCC mouse model, in which the PRCCTFE3 transgene is expressed specifically in kidneys leading to the development of RCC with characteristic histology. Expression of the receptor tyrosine kinase Ret was elevated in the kidneys of the TFE3-RCC mice, and treatment with RET inhibitor, vandetanib, significantly suppressed RCC growth. Moreover, we found that Gpnmb (Glycoprotein nonmetastatic B) expression was notably elevated in the TFE3-RCC mouse kidneys as seen in human TFE3-RCC tumors, and confirmed thatGPNMBis the direct transcriptional target of TFE3 fusions. While GPNMB IHC staining was positive in 9/9 cases of TFE3RCC, Cathepsin K, a conventional marker for TFE3-RCC, was positive in only 67% of cases. These data support RET as a potential target and GPNMB as a diagnostic marker for TFE3RCC. The TFE3-RCC mouse provides a preclinical in vivo model for the development of new biomarkers and targeted therapeutics for patients affected with this aggressive form of RCC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要