EEG classification using sparse Bayesian extreme learning machine for brain–computer interface

Neural Computing and Applications(2018)

引用 154|浏览220
暂无评分
摘要
Mu rhythm is a spontaneous neural response occurring during a motor imagery (MI) task and has been increasingly applied to the design of brain–computer interface (BCI). Accurate classification of MI is usually rather difficult to be achieved since mu rhythm is very weak and likely to be contaminated by other background noises. As an extension of the single layer feedforward network, extreme learning machine (ELM) has recently proven to be more efficient than support vector machine that is a benchmark for MI-related EEG classification. With probabilistic inference, this study introduces a sparse Bayesian ELM (SBELM)-based algorithm to improve the classification performance of MI. SBELM is able to automatically control the model complexity and exclude redundant hidden neurons by combining advantageous of both ELM and sparse Bayesian learning. The effectiveness of SBELM for MI-related EEG classification is validated on a public dataset from BCI Competition IV IIb in comparison with several other competing algorithms. Superior classification accuracy confirms that the proposed SBELM-based algorithm is a promising candidate for performance improvement of an MI BCI.
更多
查看译文
关键词
Brain–computer interface,Electroencephalogram,Motor imagery,Extreme learning machine,Sparse Bayesian learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要