Temporal enhanced ultrasound and shear wave elastography for tissue classification in cancer interventions - an experimental evaluation.

Proceedings of SPIE(2019)

引用 1|浏览8
暂无评分
摘要
Conventional B-mode ultrasound imaging lacks soft tissue contrast to differentiate various tissue types. Emerging ultrasound imaging technologies have therefore focused on extracting tissue parameters important for tissue differentiation such as scatterer size, tissue elasticity, and micro-vasculatures. Among these technologies, shear wave elastography (SWE) is an approach that measures tissue viscoelastic parameters. Our group has proposed Temporal Enhanced Ultrasound (TeUS) that differentiates tissue types without requiring any external stimuli. Through analytical derivations and simulations, we previously showed that the source of tissue typing information in TeUS is physiological micro-vibrations resulting mainly from perfusion. We further demonstrated that TeUS is sensitive to the size and distributions of scatterers in the tissue, as well as its visco-elasticity. In this paper, we designed ultrasound phantoms to mimic tissue with two different elasticities and two scatterer sizes. A flexible microtube was embedded in the phantoms to generate local micro-vibrations. We experimentally demonstrate the relationship between TeUS and SWE and their sensitivity to tissue elasticity and scatterer size. This work indicated that while shear wave measurements are sensitive to the phantoms' viscoelasticity, they are not sensitive to ultrasound scatterer size. On the contrary, the TeUS amplitude depends on both scatterer size and tissue viscoelasticity. This work could potentially inform clinicians of choosing imaging modalities and interventions based on each cancer's unique traits and properties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要