Involvement of lactate transport in two object recognition tasks that require either the hippocampus or striatum.

BEHAVIORAL NEUROSCIENCE(2019)

引用 19|浏览10
暂无评分
摘要
Growing evidence indicates that hippocampal lactate, released from astrocytes, is an important regulator of learning and memory processing. This study evaluated the selective involvement of hippocampal and striatal lactate in two object recognition tasks. The tasks tested recognition memory after a change in location of two target objects (double object location; dOL) or after replacement of familiar targets with two new objects set in the original locations (double object replacement; dOR). Rats received three study sessions across which exploration times decreased. The recognition index was the change in exploration time of both objects on a test trial from the exploration times on the final study trial. We first verified a double dissociation between hippocampus and striatum across these tasks. The sodium channel blocker, lidocaine, was infused into one of the two brain regions after the study sessions and before the test trial. To test the role of neuronal lactate in recognition memory, an inhibitor of the neuronal lactate transporter, alpha-cyano-4-hydroxycinnamate (4-CIN), was similarly infused. For both drugs, infusions into the hippocampus but not the striatum impaired recognition in the dOL, whereas infusions into the striatum but not hippocampus impaired recognition in the dOR. The findings obtained with 4-CIN demonstrate for the first time the importance of neuronal lactate uptake in the hippocampus and the striatum for object recognition memory processing.
更多
查看译文
关键词
object recognition,lactate,astrocytes,4-CIN,multiple memory systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要