A Faster Algorithm Enumerating Relevant Features over Finite Fields

arXiv: Learning(2019)

引用 0|浏览0
暂无评分
摘要
A $k$-junta function is a function which depends on only $k$ coordinates of the input. For relatively small $k$ w.r.t. the input size $n$, learning $k$-junta functions is one of fundamental problems both theoretically and practically in machine learning. For the last two decades, much effort has been made to design efficient learning algorithms for Boolean junta functions, and some novel techniques have been developed. However, in real world, multi-labeled data seem to be obtained in much more often than binary-labeled one. Thus, it is a natural question whether these techniques can be applied to more general cases about the alphabet size. In this paper, we expand the Fourier detection techniques for the binary alphabet to any finite field $\mathbb{F}_q$, and give, roughly speaking, an $O(n^{0.8k})$-time learning algorithm for $k$-juntas over $\mathbb{F}_q$. Note that our algorithm is the first non-trivial (i.e., non-brute force) algorithm for such a class even in the case where $q=3$ and we give an affirmative answer to the question posed in [MOS04]. Our algorithm consists of two reductions: (1) from learning juntas to LDME which is a variant of the learning with errors (LWE) problems introduced by [Reg05], and (2) from LDME to the light bulb problem (LBP) introduced by [Val88]. Since the reduced problem (i.e., LBP) is a kind of binary problem regardless of the alphabet size of the original problem (i.e., learning juntas), we can directly apply the techniques for the binary case in the previous work such as in [Val15, KKK18].
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要