Abstract 92: Sirtuin 2 mediated-deacetylation regulates cellular iron homeostasis

Circulation Research(2014)

引用 0|浏览5
暂无评分
摘要
Background: Sirtuins (SIRTs) are NAD+-dependent deacetylases, which regulate energy metabolism and response to oxidative stress in the heart. Iron is essential for these processes but is toxic when present in excess. However, whether SIRTs are involved in maintaining cellular iron homeostasis is not known. SIRT2 is among the least characterized SIRTs and is mainly present in the cytoplasm. We hypothesized that SIRT2 is required for cellular iron homeostasis. Methods and Results: Iron content was significantly lower in SIRT2-/- mouse embryonic fibroblasts (MEFs) compared to SIRT2+/+ MEFs (non-heme iron: 0.073 vs. 0.060 nmol/μg protein, p=0.02), andlevels of ferroportin-1 (FPN1), the major cellular iron exporter, was significantly increased in SIRT2-/- MEFs. Similarly, silencing SIRT2 in HepG2 cells decreased cellular iron levels and increased FPN1 expression, indicating that enhanced FPN1 with SIRT2 downregulation drove iron export and caused a reduction in cellular iron levels. Furthermore, iron export assays showed that iron export was increased in HepG2 cells with SIRT2 knockdown. To investigate the underlying mechanism, we focused our studies on nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a known regulator of FPN1. Our results demonstrated that Nrf2 is upregulated and translocates into the nucleus in SIRT2-/- MEFs and knocking down Nrf2 in SIRT2-/- MEFs reverses iron deficiency. Furthermore, Nrf2 is acetylated by P300/CBP and can be deacetylated by SIRT2. Finally, to confirm the role of SIRT2 in iron regulation, cellular heme and non-heme iron in the heart (major iron-consuming organ) and liver (major iron-storage organ) were measured in wild type (WT) and SIRT2-/- mice. Heme and non-heme iron content were significantly decreased in SIRT2-/- mouse livers compared to WT livers (heme: 2.25 vs. 1.65 nmol/mg protein, p=0.002; non-heme iron: 0.073 vs. 0.064 nmol/μg protein, p=0.03). Furthermore, heme levels were also significant decreased in the heart, while non-heme iron was not significantly altered. Conclusions: Our results suggest that SIRT2 regulates cellular iron homeostasis by deacetylating NRF2 and altering iron export through FPN1.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要