Weaver: Hexapod robot for autonomous navigation on unstructured terrain.

JOURNAL OF FIELD ROBOTICS(2018)

引用 54|浏览99
暂无评分
摘要
Legged robots are an efficient alternative for navigation in challenging terrain. In this paper we describe Weaver, a six-legged robot that is designed to perform autonomous navigation in unstructured terrain. It uses stereo vision and proprioceptive sensing based terrain perception for adaptive control while using visual-inertial odometry for autonomous waypoint-based navigation. Terrain perception generates a minimal representation of the traversed environment in terms of roughness and step height. This reduces the complexity of the terrain model significantly, enabling the robot to feed back information about the environment into its controller. Furthermore, we combine exteroceptive and proprioceptive sensing to enhance the terrain perception capabilities, especially in situations in which the stereo camera is not able to generate an accurate representation of the environment. The adaptation approach described also exploits the unique properties of legged robots by adapting the virtual stiffness, stride frequency, and stride height. Weaver's unique leg design with five joints per leg improves locomotion on high gradient slopes, and this novel configuration is further analyzed. Using these approaches, we present an experimental evaluation of this fully self-contained hexapod performing autonomous navigation on a multiterrain testbed and in outdoor terrain.
更多
查看译文
关键词
adaptive control,extreme environments,hexapod,impedance control,legged robots
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要