N-body Networks: a Covariant Hierarchical Neural Network Architecture for Learning Atomic Potentials

arXiv: Learning(2018)

引用 34|浏览18
暂无评分
摘要
We describe N-body networks, a neural network architecture for learning the behavior and properties of complex many body physical systems. Our specific application is to learn atomic potential energy surfaces for use in molecular dynamics simulations. Our architecture is novel in that (a) it is based on a hierarchical decomposition of the many body system into subsytems, (b) the activations of the network correspond to the internal state of each subsystem, (c) the "neurons" in the network are constructed explicitly so as to guarantee that each of the activations is covariant to rotations, (d) the neurons operate entirely in Fourier space, and the nonlinearities are realized by tensor products followed by Clebsch-Gordan decompositions. As part of the description of our network, we give a characterization of what way the weights of the network may interact with the activations so as to ensure that the covariance property is maintained.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要