Minimum Information For Dielectric Measurements Of Biological Tissues (Minder): A Framework For Repeatable And Reusable Data

INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING(2018)

引用 29|浏览24
暂无评分
摘要
The dielectric properties of biological tissues characterise the interaction of human tissues with electromagnetic (EM) fields. Accurate knowledge of the dielectric properties of tissues are vital in EM-based therapeutic and diagnostic techniques, and for assessing the safety of wireless devices. Despite the importance of these properties, the field has suffered from inconsistencies in reported data. The dielectric measurement process for tissues is known to be affected by both measurement confounders and clinical confounders; however, adequate metadata is often lacking in the literature. For this reason, this work proposes a standard, called Minimum Information for Dielectric Measurements of Biological Tissues (MINDER). In the MINDER model, the minimum types of raw data and metadata needed to interpret or replicate a dielectric study are identified and described. Alongside the minimum information model, a controlled vocabulary for metadata parameters is proposed. We also provide an example of this model applied to a dielectric measurement scenario on a biological tissue sample. The MINDER model enables reproducibility of measurements, ease of interpreting and re-using data, and comparison of data across studies. Further, this standard framework will support dielectric databases, with data searchable through metadata parameters such as temperature, frequency range, tissue type, and tissue state.
更多
查看译文
关键词
biological tissues, dielectric measurements, electromagnetic medical technologies, metadata standards, minimum information models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要