Diff-DAC: Distributed Actor-Critic for Multitask Deep Reinforcement Learning.

arXiv: Learning(2017)

引用 28|浏览20
暂无评分
摘要
We propose a multiagent distributed actor-critic algorithm for multitask reinforcement learning (MRL), named Diff-DAC. The agents are connected, forming a (possibly sparse) network. Each agent is assigned a task and has access to data from this local task only. During the learning process, the agents are able to communicate some parameters to their neighbors. Since the agents incorporate their neighborsu0027 parameters into their own learning rules, the information is diffused across the network, and they can learn a common policy that generalizes well across all tasks. Diff-DAC is scalable since the computational complexity and communication overhead per agent grow with the number of neighbors, rather than with the total number of agents. Moreover, the algorithm is fully distributed in the sense that agents self-organize, with no need for coordinator node. Diff-DAC follows an actor-critic scheme where the value function and the policy are approximated with deep neural networks, being able to learn expressive policies from raw data. As a by-product of Diff-DACu0027s derivation from duality theory, we provide novel insights into the standard actor-critic framework, showing that it is actually an instance of the dual ascent method to approximate the solution of a linear program. Experiments illustrate the performance of the algorithm in the cart-pole, inverted pendulum, and swing-up cart-pole environments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要