Interferon-inducible miR-128 modulates HIV-1 replication by targeting TNPO3 mRNA

bioRxiv(2017)

引用 0|浏览15
暂无评分
摘要
The HIV/AIDS pandemic remains an important threat to human health. We have recently demonstrated that a novel microRNA (miR-128) represses retrotransposon (LINE-1 or L1) by a dual mechanism, by directly targeting the coding region of the L1 RNA and by repressing a required nuclear import factor (TNPO1). We have further determined that miR-128 represses the expression of all three isoforms of TNPO proteins (transportins, TNPO1,-2 and TNPO3). Here, we establish that miR-128 also controls HIV-1 replication by repressing TNPO3. TNPO3 is well established to regulate HIV-1 nuclear import and viral replication. Here, we report that the type I interferon inducible miR-128 directly targets two sites in the TNPO3 mRNA, significantly down-regulating TNPO3 mRNA and protein expression levels. Manipulation of miR-128 levels in HIV target cell lines and in primary human CD4 T-cells by over-expression or knockdown showed that modulation of TNPO3 by miR-128 affects HIV-1 replication but not MLV infection. In addition, we found that miR-128 modulation of HIV-1 replication is reduced with TNPO3-independent HIV-1 virus and in cells depleted of CPSF6, suggesting that miR-128-indued TNPO3 repression is partly required for miR-128-induced inhibition of HIV-1 replication. Finally, challenging miR-modulated Jurkat cells or primary CD4 T-cells with wildtype, replication-competent HIV-1 shows that miR-128 significantly delays spreading infection. Thus, we have established a novel role of miR-128 in anti-viral defense in human cells, inhibiting HIV-1 replication partly by targeting TNPO3.
更多
查看译文
关键词
miR-128,HIV-1,TNPO3,nuclear import,restriction factor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要