Geochemical Distinction between Carbonate and Silicate Metasomatism in Generating the Mantle Sources of Alkali Basalts

Zi-Fu Zhao
Zi-Fu Zhao
Ya-Jun An
Ya-Jun An
Fei Zheng
Fei Zheng

JOURNAL OF PETROLOGY, pp. 863-884, 2017.

Cited by: 8|Views24
Weibo:
In this paper we present a combined study of wholerock major and trace element, stable Mg-isotope and radiogenic Sr–Nd–Hf isotope compositions for Cenozoic and Mesozoic alkali basalts from the West Qinling orogen, central China

Abstract:

Crustal metasomatism by subduction is considered as an important mechanism for generating mantle heterogeneity through infiltration of different metasomatic agents into the mantle. As a consequence of the subduction of oceanic crust (including oceanic basaltic rocks and seafloor sediments), both carbonate and silicate metasomatism are exp...More

Code:

Data:

0
Full Text
Bibtex
Weibo
Introduction
  • There are two types of metasomatism in the mantle. One is mantle metasomatism, which is referred to chemical alteration of the shallow mantle by melts from deeper mantle (O’Reilly & Griffin, 2012).
  • Crust–mantle interaction is realized by metasomatic reaction of such fluids or melts with the peridotite in subduction channels, with mass transfer occurring at the slab–mantle interface (Zheng, 2012).
  • This results in ultramafic metasomatites with different geochemical compositions reflecting the varying composition of the metasomatic agents, which can include silicate melts, carbonate melts and aqueous fluids (e.g.
  • It is important to establish geochemical proxies to decipher the nature of the metasomatic agents
Highlights
  • There are two types of metasomatism in the mantle
  • To decipher the origin of the alkali basalts, we have extended the geochemical data from the Cenozoic alkali basalts from the Lixian area analyzed in this study to the Mesozoic alkali basalts from the Xiahe area previously published by ourselves (Dai et al, 2014)
  • For the Mesozoic alkali basalts, the whole-rock major and trace element data, Sr–Nd and Lu–Hf isotope compositions are presented in Supplementary Tables S1, S2 and S3, respectively
  • The Cenozoic alkali basalts generally have low SiO2, but high CaO and MgO concentrations, with high CaO/Al2O3 ratios and low d26 Mg values of – 0Á54 to –0Á32ø. They are characterized by enrichment in melt-mobile incompatible trace elements, such as the light rare earth elements (LREE) and most lithophile elements (LILE) as well as Nb and Ta, but depletion in K, Pb, Zr, Hf and Ti, with high (La/Yb)N values, but low Ti/Eu ratios, typical of carbonate metasomatism. They were derived from partial melting of a carbonated mantle source that would have been generated by reaction of the overlying depleted mid-ocean ridge basalt (MORB) mantle peridotite with carbonate-rich melts derived from partial melting of subducted, carbonate-bearing, Paleotethyan oceanic crust
  • The Mesozoic basalts have relatively high SiO2 and Al2O3, but low CaO and MgO, with low CaO/Al2O3 ratios and high d26 Mg values of –0Á35 to –0Á21ø. They exhibit ocean island basalt (OIB)-like trace element distribution patterns with enrichment in LILE and LREE, but no depletion in high field strength elements (HFSE) and negative Pb anomalies. They were derived from partial melting of a fertile and enriched mantle source that was generated by reaction of depleted MORB mantle peridotite with silicate melts derived from partial melting of subducted carbonatepoor Paleotethyan oceanic crust
  • Both the carbonate and silicate melts would have been incorporated into the mantle sources of the alkali basalts
Methods
  • Whole-rock major and trace elements

    After detailed petrographic examination, fresh samples were selected and crushed to powders of 200 mesh in an agate mortar.
  • Major elements were analyzed at ALS Chemex Company, Guangzhou, by X-ray fluorescence (XRF).
  • The analytical precision for the major elements is better than 62–5%.
  • Trace elements were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using an Agilent 7500 e system after complete dissolution at Wuhan Sample Solution Analytical Technology Company, Wuhan.
  • Four standards were used to monitor the analytical quality, and the analytical precision for most trace elements is better than 65%
Results
  • To decipher the origin of the alkali basalts, the authors have extended the geochemical data from the Cenozoic alkali basalts from the Lixian area analyzed in this study to the Mesozoic alkali basalts from the Xiahe area previously published by ourselves (Dai et al, 2014).
  • Whole-rock Sr–Nd and Lu–Hf isotope compositions are presented in Tables 3 and 4, respectively.
  • For the Mesozoic alkali basalts, the whole-rock major and trace element data, Sr–Nd and Lu–Hf isotope compositions are presented in Supplementary Tables S1, S2 and S3, respectively.
  • All the major oxides plotted in diagrams are normalized volatile free before plotting
Conclusion
  • The origin of alkali basalts

    Previous studies have demonstrated that mantle melting and subsequent magma differentiation do not fractionate the Mg-isotope composition of mafic igneous rocks (Teng et al, 2007, 2010a).
  • The Mesozoic basalts have relatively high SiO2 and Al2O3, but low CaO and MgO, with low CaO/Al2O3 ratios and high d26 Mg values of –0Á35 to –0Á21ø
  • They exhibit OIB-like trace element distribution patterns with enrichment in LILE and LREE, but no depletion in HFSE and negative Pb anomalies.
  • The carbonate and silicate metasomatisms at the slab–mantle interface in this Paleotethyan oceanic subduction channel were responsible, respectively, for the generation of the mantle sources of the two ages of alkali basalts
Summary
  • Introduction:

    There are two types of metasomatism in the mantle. One is mantle metasomatism, which is referred to chemical alteration of the shallow mantle by melts from deeper mantle (O’Reilly & Griffin, 2012).
  • Crust–mantle interaction is realized by metasomatic reaction of such fluids or melts with the peridotite in subduction channels, with mass transfer occurring at the slab–mantle interface (Zheng, 2012).
  • This results in ultramafic metasomatites with different geochemical compositions reflecting the varying composition of the metasomatic agents, which can include silicate melts, carbonate melts and aqueous fluids (e.g.
  • It is important to establish geochemical proxies to decipher the nature of the metasomatic agents
  • Methods:

    Whole-rock major and trace elements

    After detailed petrographic examination, fresh samples were selected and crushed to powders of 200 mesh in an agate mortar.
  • Major elements were analyzed at ALS Chemex Company, Guangzhou, by X-ray fluorescence (XRF).
  • The analytical precision for the major elements is better than 62–5%.
  • Trace elements were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using an Agilent 7500 e system after complete dissolution at Wuhan Sample Solution Analytical Technology Company, Wuhan.
  • Four standards were used to monitor the analytical quality, and the analytical precision for most trace elements is better than 65%
  • Results:

    To decipher the origin of the alkali basalts, the authors have extended the geochemical data from the Cenozoic alkali basalts from the Lixian area analyzed in this study to the Mesozoic alkali basalts from the Xiahe area previously published by ourselves (Dai et al, 2014).
  • Whole-rock Sr–Nd and Lu–Hf isotope compositions are presented in Tables 3 and 4, respectively.
  • For the Mesozoic alkali basalts, the whole-rock major and trace element data, Sr–Nd and Lu–Hf isotope compositions are presented in Supplementary Tables S1, S2 and S3, respectively.
  • All the major oxides plotted in diagrams are normalized volatile free before plotting
  • Conclusion:

    The origin of alkali basalts

    Previous studies have demonstrated that mantle melting and subsequent magma differentiation do not fractionate the Mg-isotope composition of mafic igneous rocks (Teng et al, 2007, 2010a).
  • The Mesozoic basalts have relatively high SiO2 and Al2O3, but low CaO and MgO, with low CaO/Al2O3 ratios and high d26 Mg values of –0Á35 to –0Á21ø
  • They exhibit OIB-like trace element distribution patterns with enrichment in LILE and LREE, but no depletion in HFSE and negative Pb anomalies.
  • The carbonate and silicate metasomatisms at the slab–mantle interface in this Paleotethyan oceanic subduction channel were responsible, respectively, for the generation of the mantle sources of the two ages of alkali basalts
Tables
  • Table1: The Mg-isotope compositions of Cenozoic and Mesozoic alkali basalts from the West Qinling orogen
  • Table2: Whole-rock major and trace element compositions of Cenozoic alkali basalts from the West Qinling orogen. Continued Locality
  • Table3: Whole-rock Rb–Sr and Sm–Nd isotope compositions of Cenozoic alkali basalts from the West Qinling orogen
  • Table4: Whole-rock Lu–Hf isotope compositions of Cenozoic alkali basalts from the West Qinling orogen
Download tables as Excel
Funding
  • This study was supported by funds from the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB18000000), the Chinese Ministry of Science and Technology (2015CB856102, 2016YFC0600103), the Natural Science Foundation of China (41573001), the Fundamental Research Funds for the Central Universities and the Youth Innovation Promotion Association of the Chinese Academy of Science (2015372).
Reference
  • Allegre, C. J. (1982). Chemical geodynamics. Tectonophysics 81, 109–132.
    Google ScholarLocate open access versionFindings
  • Ammannati, E., Jacob, D. E., Avanzinelli, R., Foley, S. F. & Conticelli, S. (2016). Low Ni olivine in silica-undersaturated ultrapotassic igneous rocks as evidence for carbonate metasomatism in the mantle. Earth and Planetary Science Letters 444, 64–74.
    Google ScholarLocate open access versionFindings
  • An, Y. J., Wu, F., Xiang, Y., Nan, X. Y., Yu, X., Yang, J., Yu, H. M., Xie, L. W. & Huang, F. (2014). High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS. Chemical Geology 390, 9–21.
    Google ScholarLocate open access versionFindings
  • Bizimis, M., Salters, V. J. M. & Dawson, J. B. (2003). The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contributions to Mineralogy and Petrology 145, 281–300.
    Google ScholarLocate open access versionFindings
  • Bourdon, B., Tipper, E. T., Fitoussi, C. & Stracke, A. (2010). Chondritic Mg isotope composition of the Earth. Geochimica et Cosmochimica Acta 74, 5069–5083.
    Google ScholarLocate open access versionFindings
  • Coltorti, M., Bonadiman, C., Hinton, R. W., Siena, F. & Upton, B. G. J. (1999). Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology 40, 133–165.
    Google ScholarLocate open access versionFindings
  • Coltorti, M., Bonadiman, C., Faccini, B., Ntaflos, T. & Siena, F. (2007). Slab melt and intraplate metasomatism in Kapfenstein mantle xenoliths. Lithos 94, 66–89.
    Google ScholarLocate open access versionFindings
  • Dai, L.-Q., Zhao, Z.-F. & Zheng, Y.-F. (2014). Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts. Geochemistry, Geophysics, Geosystems 15, 3762–3779.
    Google ScholarLocate open access versionFindings
  • Dai, L.-Q., Zhao, Z.-F. & Zheng, Y.-F. (2015). Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong’an–Dabie orogens. Gondwana Research 27, 1236–1254.
    Google ScholarLocate open access versionFindings
  • Dai, L.-Q., Zheng, Y.-F. & Zhao, Z.-F. (2016). Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks. Lithos 240–243, 327–336.
    Google ScholarLocate open access versionFindings
  • Dai, L.-Q., Zheng, F., Zhao, Z.-F. & Zheng, Y.-F. (2017). Recycling of Paleotethyan oceanic crust: Geochemical record from postcollisional mafic igneous rocks in the Tongbai–Hong’an orogens. Geological Society of America Bulletin 129, 179–192.
    Google ScholarLocate open access versionFindings
  • Dasgupta, R. & Hirschmann, M. M. (2006). Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440, 659–662.
    Google ScholarLocate open access versionFindings
  • Dasgupta, R., Hirschmann, M. M. & Smith, N. D. (2007). Partial melting experiments of peridotite þ CO2 at 3 GPa and genesis of alkalic ocean island basalts. Journal of Petrology 48, 2093–2124.
    Google ScholarLocate open access versionFindings
  • Dilek, Y. & Altunkaynak, S. (2009). Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: Mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. In: Geological Society, London, Special Publications 311, 213–233.
    Google ScholarFindings
  • Dong, Y. & Santosh, M. (2016). Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research 29, 1–40.
    Google ScholarLocate open access versionFindings
  • Dong, Y., Zhang, G., Neubauer, F., Liu, X., Genser, J. & Hauzenberger, C. (2011). Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences 41, 213–237.
    Google ScholarLocate open access versionFindings
  • Ducea, M. N., Saleeby, J., Morrison, J. & Valencia, V. A. (2005). Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation: an example from California. American Mineralogist 90, 864–870.
    Google ScholarLocate open access versionFindings
  • Enkelmann, E., Ratschbacher, L., Jonckheere, R., Nestler, R., Fleischer, M., Gloaguen, R., Hacker, B. R., Zhang, Y. Q. & Ma, Y.-S. (2006). Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: is Tibetan lower crustal flow diverging around the Sichuan Basin?. Geological Society of America Bulletin 118, 651–671.
    Google ScholarLocate open access versionFindings
  • Fan, L. Y., Wang, Y. J., Li, X. Y. & Li, C. W. (2007). Geochemical characteristics of late Mesozoic mafic volcanic rocks from Western Qinling and its tectonic implications. Geotectonica Et Metallogenia 31, 471–481.
    Google ScholarLocate open access versionFindings
  • Fantle, M. S. & Higgins, J. (2014). The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: implications for the geochemical cycles of Ca and Mg. Geochimica et Cosmochimica Acta 142, 458–481.
    Google ScholarLocate open access versionFindings
  • Farmer, G. L. (2014). Continental basaltic rocks. In: Holland, H. & Turekian, K. (eds) Treatise on Geochemistry, 2nd edn. Elsevier, 4, 75–110.
    Google ScholarLocate open access versionFindings
  • Feng, Q. L., Du, Y. S., Yin, H. F., Sheng, J. H. & Xu, J. F. (1996). Carboniferous radiolaria fauna firstly discovered in Mian–Lue ophiolitic melange belt of South Qinling Mountains. Science in China, Series D: Earth Sciences 39, 87–92.
    Google ScholarLocate open access versionFindings
  • Feng, Y., Cao, X., Zhang, E., Hu, Y., Pan, X., Yang, J., Jia, Q. & Li, W. (2002). Structure, Orogenic Processes and Geodynamic of the Western Qinling Orogen. Xi’an: Xi’an Map Press, 263 pp.
    Google ScholarFindings
  • Fu, B., Zheng, Y. F. & Touret, J. L. R. (2002). Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chemical Geology 187, 107–128.
    Google ScholarLocate open access versionFindings
  • Galy, A., Belshaw, N. S., Halicz, L. & O’Nions, R. K. (2001). High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry 208, 89–98.
    Google ScholarLocate open access versionFindings
  • Galy, A., Yoffe, O., Janney, P. E., Williams, R. W., Cloquet, C., Alard, O., Halicz, L.,Wadhwa, M., Hutcheon, I. D., Ramon, E. & Carignan, J. (2003). Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry 18, 1352–1356.
    Google ScholarFindings
  • Green, T. H., Adam, J. & Siel, S. H. (1992). Trace element partitioning between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism. Mineralogy and Petrology 46, 179–184.
    Google ScholarLocate open access versionFindings
  • Guo, P. Y., Niu, Y. L. & Yu, X. H. (2014). A synthesis and new perspective on the petrogenesis of kamafugites from West Qinling, China, in a global context. Journal of Asian Earth Sciences 79, 86–96.
    Google ScholarLocate open access versionFindings
  • Handler, M. R., Baker, J. A., Schiller, M., Bennett, V. C. & Yaxley, G. M. (2009). Magnesium stable isotope composition of Earth’s upper mantle. Earth and Planetary Science Letters 282, 306–313.
    Google ScholarLocate open access versionFindings
  • Herzberg, C. (2011). Identification of source lithology in the Hawaiian and Canary islands: implications for origins. Journal of Petrology 52, 113–146.
    Google ScholarLocate open access versionFindings
  • Herzberg, C. & O’Hara, M. J. (2002). Plume-associated ultramafic magmas of Phanerozoic age. Journal of Petrology 43, 1857–1883.
    Google ScholarLocate open access versionFindings
  • Higgins, J. A. & Schrag, D. P. (2010). Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochimica et Cosmochimica Acta 74, 5039–5053.
    Google ScholarLocate open access versionFindings
  • Hirose, K. (1997). Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophysical Research Letters 24, 2837–2840.
    Google ScholarLocate open access versionFindings
  • Hirose, K. & Kushiro, I. (1993). Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters 114, 477–489.
    Google ScholarLocate open access versionFindings
  • Hirschmann, M. M., Kogiso, T., Baker, M. B. & Stolper, E. M. (2003). Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31, 481–484.
    Google ScholarLocate open access versionFindings
  • Hoernle, K., Tilton, G., Le Bas, M. J., Duggen, S. & GarbeSchonberg, D. (2002). Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology 142, 520–542.
    Google ScholarLocate open access versionFindings
  • Hofmann, A. W. (1988). Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90, 297–314.
    Google ScholarLocate open access versionFindings
  • Hofmann, A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229.
    Google ScholarLocate open access versionFindings
  • Huang, F., Glessner, J., Ianno, A., Lundstrom, C. & Zhang, Z. (2009). Magnesium isotopic composition of igneous rock standards measured by MC-ICP-MS. Chemical Geology 268, 15–23.
    Google ScholarLocate open access versionFindings
  • Huang, J., Ke, S., Gao, Y., et al. (2015a). Magnesium isotopic compositions of altered oceanic basalts and gabbros from IODP site 1256 at the East Pacific Rise. Lithos 231, 53–61.
    Google ScholarLocate open access versionFindings
  • Huang, J., Li, S.-G., Xiao, Y., Ke, S., Li, W.-Y. & Tian, Y. (2015b). Origin of low d26 Mg Cenozoic basalts from South China Block and their geodynamic implications. Geochimica et Cosmochimica Acta 164, 298–317.
    Google ScholarLocate open access versionFindings
  • Huang, K.-J., Teng, F.-Z., Wei, G.-J., Ma, J.-L. & Bao, Z.-Y. (2012). Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China. Earth and Planetary Science Letters 359, 73–83.
    Google ScholarLocate open access versionFindings
  • Huang, S., Farkas, J. & Jacobsen, S. B. (2011). Stable calcium isotopic compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochimica et Cosmochimica Acta 75, 4987–4997.
    Google ScholarLocate open access versionFindings
  • Ionov, D. A., O’Reilly, S. Y., Genshaft, Y. S. & Kopylova, M. G. (1996). Carbonate-bearing mantle xenoliths from Spitsbergen: phase relationships, mineral compositions and trace element residence. Contributions to Mineralogy and Petrology 125, 375–392.
    Google ScholarLocate open access versionFindings
  • Ito, E., White, W. M. & Gopel, C. (1987). The O, Sr, Nd and Pb isotope geochemistry of MORB. Chemical Geology 62, 157–176.
    Google ScholarLocate open access versionFindings
  • Jacobson, A. D., Zhang, Z., Lundstrom, C. & Huang, F. (2010). Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota. Earth and Planetary Science Letters 297, 446–452.
    Google ScholarLocate open access versionFindings
  • Jahn, B.-m., Liu, X. C., Yui, T. F., Morin, N. & Bouhnik-Le Coz, M. (2005). High-pressure/ultrahigh-pressure eclogites from the Hong’an Block, East–Central China: geochemical characterization, isotope disequilibrium and geochronological controversy. Contributions to Mineralogy and Petrology 149, 499–526.
    Google ScholarLocate open access versionFindings
  • Klemme, S., van der Laan, S. R., Foley, S. F. & Gunther, D. (1995). Experimentally determined trace and minor element partitioning between clinopyroxene and carbonatite melt under upper mantle conditions. Earth and Planetary Science Letters 133, 439–448.
    Google ScholarLocate open access versionFindings
  • Kushiro, I. (1996). Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. In: Basu, A. & Hart, S. (eds) Earth Processes: Reading the Isotopic Code. American Geophysical Union, Geophyical Monographs 95, 109–122.
    Google ScholarLocate open access versionFindings
  • Lai, Y.-J., Pogge von Strandmann, P. A. E., Dohmen, R., Takazawa, E. & Elliott, T. (2015). The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochimica et Cosmochimica Acta 164, 318–332.
    Google ScholarLocate open access versionFindings
  • Lambart, S., Laporte, D. & Schiano, P. (2013). Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints. Lithos 160-161, 14–36.
    Google ScholarLocate open access versionFindings
  • Lambart, S., Baker, M. B. & Stolper, E. M. (2016). The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. Journal of Geophysical Research: Solid Earth 121, 5708–5735.
    Google ScholarLocate open access versionFindings
  • Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali–silica diagram. Journal of Petrology 27, 745–750.
    Google ScholarLocate open access versionFindings
  • Li, S. G., Huang, F., Nie, Y. H., Han, W. L., Long, G., Li, H. M., Zhang, S. Q. & Zhang, Z. H. (2001). Geochemical and geochronological constraints on the suture location between the North and South China Blocks in the Dabie orogen, Central China. Physics and Chemistry of the Earth (A) 26, 655–672.
    Google ScholarLocate open access versionFindings
  • Li, S. G., Hou, Z. H., Yang, Y. C., Sun, W. D., Zhang, G. W. & Li, Q. L. (2004). Timing and geochemistry characters of the Sanchazi magmatic arc in Mianlue tectonic zone, South Qinling. Science in China, Series D 47, 317–328.
    Google ScholarLocate open access versionFindings
  • Li, W.-Y., Teng, F.-Z., Ke, S., Rudnick, R. L., Gao, S., Wu, F.-Y. & Chappell, B. (2010). Heterogeneous magnesium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta 74, 6867–6884.
    Google ScholarLocate open access versionFindings
  • Li, X.-W., Mo, X.-X., Yu, X.-H., Ding, Y., Huang, X.-F., Wei, P. & He, W.-Y. (2013). Petrology and geochemistry of the early Mesozoic pyroxene andesites in the Maixiu Area, West Qinling, China: Products of subduction or syn-collision?. Lithos 172–173, 158–174.
    Google ScholarLocate open access versionFindings
  • Liu, D., Zhao, Z. D., Zhu, D. C., Niu, Y. L., Widom, E., Teng, F. Z., DePaolo, D. J., Ke, S., Xu, J. F., Wang, Q. & Mo, X. X. (2015). Identifying mantle carbonatite metasomatism through Os–Sr–Mg isotopes in Tibetan ultrapotassic rocks. Earth and Planetary Science Letters 430, 458–469.
    Google ScholarLocate open access versionFindings
  • Liu, X.-M., Teng, F.-Z., Rudnick, R. L., McDonough, W. F. & Cummings, M. L. (2014). Massive magnesium depletion and isotope fractionation in weathered basalts. Geochimica et Cosmochimica Acta 135, 336–349.
    Google ScholarLocate open access versionFindings
  • Lu, Y.-H., Zhao, Z.-F. & Zheng, Y.-F. (2016). Geochemical constraints on the source nature and melting conditions of Triassic granites from South Qinling in central China. Lithos 264, 141–157.
    Google ScholarLocate open access versionFindings
  • Ma, G. S.-K., Malpas, J., Xenophontos, C. & Chan, G. H.-N. (2011). Petrogenesis of latest Miocene–Quaternary continental intraplate volcanism along the northern Dead Sea Fault System (Al Ghab–Homs Volcanic Field), western Syria: Evidence for lithosphere–asthenosphere interaction. Journal of Petrology 52, 401–430.
    Google ScholarLocate open access versionFindings
  • Mallik, A. & Dasgupta R., (2013). Reactive infiltration of MORB–eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. Journal of Petrology 54, 2267–2300.
    Google ScholarLocate open access versionFindings
  • McCulloch, M. T. & Gamble, J. A. (1991). Geochemical and geodynamical constraints on subduction. Earth and Planetary Science Letters 102, 358–374.
    Google ScholarLocate open access versionFindings
  • McDonough, W. F. & Sun, S. S. (1995). The composition of the Earth. Chemical Geology 120, 223–253.
    Google ScholarLocate open access versionFindings
  • Meng, Q. R. & Zhang, G. W. (2000). Geologic framework and tectonic evolution of the Qinling orogen, Central China. Tectonophysics 323, 183–196.
    Google ScholarLocate open access versionFindings
  • Meng, Q.-R., Wang, E. & Hu, J.-M. (2005). Mesozoic sedimentary evolution of the northwest Sichuan basin: implication for continued clockwise rotation of the South China block. Geological Society of America Bulletin 117, 396–410.
    Google ScholarLocate open access versionFindings
  • Munker, C., Weyer, S., Scherer, E. & Mezger, K. (2001). Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochemistry, Geophysics, Geosystems 2, 1064–1083.
    Google ScholarLocate open access versionFindings
  • Neumann, E. R., Wulff-Pedersen, E., Pearson, N. J. & Spencer, E. A. (2002). Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. Journal of Petrology 43, 825–857.
    Google ScholarLocate open access versionFindings
  • Opfergelt, S., Georg, R. B., Delvaux, B., Cabidoche, Y. M., Burton, K. W. & Halliday, A. N. (2012). Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences, Guadeloupe. Earth and Planetary Science Letters 341, 176–185.
    Google ScholarLocate open access versionFindings
  • O’Reilly, S. Y. & Griffin, W. L. (2012). Mantle metasomatism. In: Harlov, D. E. & Austrheim, H. (eds) Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, pp. 467–528.
    Google ScholarLocate open access versionFindings
  • Pilet, S., Baker, M. B. & Stolper, E. M. (2008). Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916–919.
    Google ScholarLocate open access versionFindings
  • Pogge von Strandmann, P. A. E., Burton, K. W., James, R. H., van Calsteren, P., Gislason, S. R. & Sigfusson, B. (2008). The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth and Planetary Science Letters 276, 187–197.
    Google ScholarLocate open access versionFindings
  • Pogge von Strandmann, P. A. E., Elliott, T., Marschall, H. R., Coath, C., Lai, Y.-J., Jeffcoate, A. B. & Ionov, D. A. (2011). Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochimica et Cosmochimica Acta 75, 5247–5268.
    Google ScholarLocate open access versionFindings
  • Pokrovsky, B. G., Mavromatis, V. & Pokrovsky, O. S. (2011). Covariation of Mg and C isotopes in late Precambrian carbonates of the Siberian Platform: A new tool for tracing the change in weathering regime? Chemical Geology 290, 67–74.
    Google ScholarLocate open access versionFindings
  • Poli, S. (2015). Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nature Geoscience 8, 633–636.
    Google ScholarLocate open access versionFindings
  • Prouteau, G., Scaillet, B., Pichavant, M. & Maury, R. (2001). Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197–200.
    Google ScholarLocate open access versionFindings
  • Prytulak, J. & Elliott, T. (2007). TiO2 enrichment in ocean island basalts. Earth and Planetary Science Letters 263, 388–403.
    Google ScholarLocate open access versionFindings
  • Qin, J. F., Lai, S., Zhang, G. W., Diwu, C. R. & Li, Y. F. (2008). Zircon LA-ICP-MS U–Pb dating of the Longkang ignimbrite in the Jiuzhaigou area, Sichuan, China: evidence of the westward extension of the Mianlue suture. Geological Bulletin of China 154, 345–350.
    Google ScholarLocate open access versionFindings
  • Rapp, R. P., Shimizu, N., Norman, M. D. & Applegate, G. S. (1999). Reaction between slab derived melts and peridotite in the mantle wedge: experimental constraints at 3Á8 GPa. Chemical Geology 160, 335–356.
    Google ScholarLocate open access versionFindings
  • Ringwood, A. E. (1990). Slab–mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chemical Geology 82, 187–207.
    Google ScholarLocate open access versionFindings
  • Roden, M. F. & Murthy, V. R. (1985). Mantle metasomatism. Annual Review of Earth and Planetary Sciences 13, 169–296.
    Google ScholarLocate open access versionFindings
  • Rosatellia, G., Wall, F. & Stoppa, F. (2007). Calcio-carbonatite melts and metasomatism in the mantle beneath Mt. Vulture (Southern Italy). Lithos 99, 229–248.
    Google ScholarLocate open access versionFindings
  • Rudnick, R. L., McDonough, W. F. & Chappell, B. W. (1993). Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth and Planetary Science Letters 114, 463–475.
    Google ScholarLocate open access versionFindings
  • Schmidt, M. W. & Poli, S. (2003). Generation of mobile components during subduction of oceanic crust. In: Treatise on Geochemistry 3.
    Google ScholarFindings
  • Skora, S. & Blundy, J. (2010). High-pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism. Journal of Petrology 51, 2211–2243.
    Google ScholarLocate open access versionFindings
  • Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. (2005). An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597.
    Google ScholarLocate open access versionFindings
  • Spandler, C. & Pirard, C. (2013). Element recycling from subducting slabs to arc crust: A review. Lithos 170–171, 208–223.
    Google ScholarLocate open access versionFindings
  • Spandler, C., Yaxley, G., Green, D. H. & Rosenthal, A. (2008). Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600C and 3 to 5 GPa. Journal of Petrology 49, 771–795.
    Google ScholarLocate open access versionFindings
  • Stracke, A. (2012). Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology 330–331, 274–299.
    Google ScholarLocate open access versionFindings
  • Su, B. X., Zhang, H. F., Deloule, E., Vigier, N., Hu, Y., Tang, Y. J., Xiao, Y. & Sakyi, P. A. (2014). Distinguishing silicate and carbonatite mantle metasomatism by using lithium and its isotope. Chemical Geology 381, 67–77.
    Google ScholarLocate open access versionFindings
  • Sun, S.-s. & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D. & Norry, M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42, 313–345.
    Google ScholarLocate open access versionFindings
  • Teng, F.-Z., Wadhwa, M. & Helz, R. T. (2007). Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle. Earth and Planetary Science Letters 261, 84–92.
    Google ScholarLocate open access versionFindings
  • Teng, F.-Z., Li, W.-Y., Ke, S., Marty, B., Dauphas, N., Huang, S.C., Wu, F.-Y. & Pourmand, A. (2010a). Magnesium isotopic composition of the Earth and chondrites. Geochimica et Cosmochimica Acta 74, 4150–4166.
    Google ScholarLocate open access versionFindings
  • Teng, F.-Z., Li, W.-Y., Rudnick, R. L. & Gardner, L. R. (2010b). Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth and Planetary Science Letters 300, 63–71.
    Google ScholarLocate open access versionFindings
  • Teng, F.-Z., Yang, W., Rudnick, R. L. & Hu, Y. (2013). Heterogeneous magnesium isotopic composition of the lower continental crust: a xenolith perspective. Geochemistry, Geophysics, Geosystems 14, 3844–3856.
    Google ScholarLocate open access versionFindings
  • Tian, H., Yang, W., Li, S.-G., Ke, S. & Chu, Z. (2016). Origin of low d26 Mg basalts with EM-I component: evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochimica et Cosmochimica Acta 188, 93–105.
    Google ScholarLocate open access versionFindings
  • Tipper, E., Galy, A. & Bickle, M. (2006). Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: implications for the oceanic Ca cycle. Earth and Planetary Science Letters 247, 267–279.
    Google ScholarLocate open access versionFindings
  • Walter, M. J. (1998). Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, 29–60.
    Google ScholarLocate open access versionFindings
  • Wang, X. X., Wang, T. & Zhang, C. (2013). Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences 72, 129–151.
    Google ScholarLocate open access versionFindings
  • Wasylenki, L. E., Baker, M. B., Kent, A. J. R. & Stolper, E. M. (2003). Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. Journal of Petrology 44, 1163–1191.
    Google ScholarLocate open access versionFindings
  • Weis, D., Kieffer, B., Maerschalk, C., Barling, J., Jong, J. D., Williams, G. A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J. S., Goolaerts, A., Friedman, R. M. & Mahoney, J. B. (2006). High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems 7, Q08006, doi: 10.1029/2006GC001283.
    Locate open access versionFindings
  • Weis, D., Kieffer, B., Hanano, D., Nobre, Silva, I., Barling, J., Pretorius, W., Maerschalk, C. & Mattielli, N. (2007). Hf isotope compositions of U.S. Geological Survey reference materials. Geochemistry, Geophysics, Geosystems 8, Q06006, doi:10.1029/2006GC001473.
    Locate open access versionFindings
  • Wombacher, F., Eisenhauer, A., Bohm, F., Gussone, N., Regenberg, M., Dullo, W. C. & Ruggeberg, A. (2011). Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochimica et Cosmochimica Acta 75, 5797–5818.
    Google ScholarLocate open access versionFindings
  • Wu, Y.-B. & Zheng, Y.-F. (2013). Tectonic evolution of a composite collision orogen: An overview on the Qinling–Tongbai–Hong’an–Dabie–Sulu orogenic belt in central China. Gondwana Research 23, 1402–1428.
    Google ScholarLocate open access versionFindings
  • Wu, Y. B., Hanchar, J. M., Gao, S., Sylvester, P. J., Tubrett, M., Qiu, H. N., Wijbrans, J. R., Brouwer, F. M., Yang, S. H., Yang, Q. J., Liu, Y. S. & Yuan, H. L. (2009). Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling–Dabie–Sulu orogen, central China. Earth and Planetary Science Letters 277, 345–354.
    Google ScholarLocate open access versionFindings
  • Xu, Z., Zheng, Y.-F. & Zhao, Z.-F. (2017). The origin of Cenozoic continental basalts in east–central China: constrained by linking Pb isotopes to other geochemical variables. Lithos 268–271, 302–319.
    Google ScholarLocate open access versionFindings
  • Yang, W., Teng, F.-Z., Zhang, H.-F. & Li, S.-G. (2012a). Magnesium isotopic systematics of continental basalts from the North China craton: implications for tracing subducted carbonate in the mantle. Chemical Geology 328, 185–194.
    Google ScholarLocate open access versionFindings
  • Yang, Y. H., Zhang, H. F., Chu, Z. Y., Xie, L. W. & Wu, F. Y. (2010). Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry 290, 120–126.
    Google ScholarLocate open access versionFindings
  • Yang, Y. H., Chu, Z. Y., Wu, F. Y., Xie, L. W. & Yang, J. H. (2011). Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC-ICP-MS. Journal of Analytical Atomic Spectrometry 26, 1237–1244.
    Google ScholarFindings
  • Yang, Y. H., Wu, F. Y., Liu, Z. C., Chu, Z. Y., Xie, L. W. & Yang, J. H. (2012a). Evaluation of Sr chemical purification technique for natural geological samples using common cation-exchange and Sr-specific extraction chromatographic resin prior to MC-ICP-MS or TIMS measurement. Journal of Analytical Atomic Spectrometry 27, 516–522.
    Google ScholarFindings
  • Yang, W., Teng, F.-Z., Zhang, H.-F., & Li, S.-G. (2012b). Magnesium isotopic sys-tematics of continental basalts from the North China craton: implications for tracing subducted carbonate in the mantle. Chemical Geology 328, 185–194.
    Google ScholarLocate open access versionFindings
  • Yaxley, G. M., Crawford, A. J. & Green, D. H. (1991). Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth and Planetary Science Letters 107, 305–317.
    Google ScholarLocate open access versionFindings
  • Young, E. D. & Galy, A. (2004). The isotope geochemistry and cosmochemistry of magnesium. In: Johnson, C. M., Beard, B. L. & Albarede, F. (eds) Geochemistry of Non-traditional Stable Isotopes. Mineralogical Society of America and Geochemical Society, Reviews in Mineralogy and Geochemistry 55, 197–230.
    Google ScholarLocate open access versionFindings
  • Young, E. D., Tonui, E., Manning, C. E., Schauble, E. & Macris, C. A. (2009). Spinel–olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth. Earth and Planetary Science Letters 288, 524–533.
    Google ScholarLocate open access versionFindings
  • Yu, X. H., Mo, X. X., Su, S. G., Dong, F. L., Zhao, X. & Wang, C. (2003). Discovery and significance of Cenozoic volcanic carbonatite in Lixian, Gansu Province. Acta Petrologica Sinica 19, 105–112.
    Google ScholarLocate open access versionFindings
  • Yu, X. H., Zhao, Z. D., Mo, X. X., Wang, Y. L., Xiao, Z. & Zhu, D. Q. (2004). Trace element, REE and Sr, Nd, Pb isotopic geochemistry of Cenozoic kamafugites and carbonatites from west Qinling, Gansu Province: implication of plume–lithosphere interaction. Acta Petrologica Sinica 20, 483–494.
    Google ScholarLocate open access versionFindings
  • Yu, X. H., Zhao, Z. D., Mo, X. X., Zhou, S., Zhu, D. Q. & Wang, Y. L. (2005). 40Ar/39Ar dating for Cenozoic kamafugites from western Qinling in Gansu Province. Chinese Science Bulletin 50, 2638–2643.
    Google ScholarLocate open access versionFindings
  • Yu, X. H., Mo, X. X., Zhao, Z. D., He, W. Y. & Li, Y. (2011). Cenozoic bimodal volcanic rocks of the West Qinling: Implication for the genesis and nature of the rifting of north–south tectonic belt. Acta Petrologica Sinica 27, 2195–2202.
    Google ScholarLocate open access versionFindings
  • Zeng, G., Chen, L. H., Xu, X. S., Jiang, S. Y. & Hofmann, A. W. (2010). Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chemical Geology 273, 35–45.
    Google ScholarLocate open access versionFindings
  • Zhang, E. P., Niu, D. Y., Hou, Y. G., Li, Y. G. & Zhang, L. F. (1992). Geological map of Qinling–Daba Mountains and adjacent of the People’s Republic of China. Geological Publishing House (in Chinese).
    Google ScholarFindings
  • Zhang, G. W., Zhang, B. R., Yuan, X. C. & Chen, J. Y. (2001). Qinling Orogenic Belt and Continental Dynamics. Science Press.
    Google ScholarFindings
  • Zhang, H. F., Jin, L. L., Zhang, L. & Harris, N. (2007). Geochemical and Pb–Sr–Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity. Science in China, Series D 50, 184–196.
    Google ScholarLocate open access versionFindings
  • Zhang, J.-J., Zheng, Y.-F. & Zhao, Z.-F. (2009). Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east–central China. Lithos 110, 305–326.
    Google ScholarLocate open access versionFindings
  • Zhao, Z.-F., Dai, L.-Q. & Zheng, Y.-F. (2013). Postcollisional mafic igneous rocks record crust– mantle interaction during continental deep subduction. Scientific Reports 3, 3413, http://dx.doi.org/10.1038/srep03413.
    Locate open access versionFindings
  • Zhao, Z.-F., Dai, L.-Q. & Zheng, Y.-F. (2015). Two types of the crust–mantle interaction in continental subduction zones. Science in China: Earth Sciences 58, 1269–1283.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F. (2012). Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology 328, 5–48.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F. & Hermann, J. (2014). Geochemistry of continental subduction-zone fluids. Earth, Planets and Space 66, 93; doi: 10.1186/1880-5981-66-93.
    Locate open access versionFindings
  • Zheng, Y.-F., Xia, Q.-X., Chen, R.-X. & Gao, X.-Y. (2011). Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews 107, 342–374.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., Xiao, W.-J. & Zhao, G.-C. (2013). Introduction to tectonics of China. Gondwana Research 23, 1189–1206.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., Chen, Y.-X., Dai, L.-Q. & Zhao, Z.-F. (2015). Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Science in China: Earth Sciences 58, 1045–1069.
    Google ScholarLocate open access versionFindings
  • Zheng, Y. F., Chen, R. X., Xu, Z. & Zhang, S. B. (2016). The transport of water in subduction zones. Science in China: Earth Sciences 59, 651–682.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F. & Chen, Y.-X. (2016). Continental versus oceanic subduction zones. National Science Review 3, 495–519.
    Google ScholarLocate open access versionFindings
  • Zhou, L.-G., Xia, Q.-X., Chen, R.-X. & Zheng, Y.-F. (2015). Tectonic evolution from oceanic subduction to continental collision during the closure of Paleotethys: Geochronological and geochemical constraints from metamorphic rocks in the Hong’an orogen. Gondwana Research 28, 348–370.
    Google ScholarLocate open access versionFindings
  • Zindler, A. & Hart, S. (1986). Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493–571.
    Google ScholarLocate open access versionFindings
Your rating :
0

 

Tags
Comments