Abstract 208: Altered Cerebrovascular Reactivity Following One Month of Obstructive Sleep Apnea

Arteriosclerosis, Thrombosis, and Vascular Biology(2013)

引用 1|浏览17
暂无评分
摘要
Obstructive sleep apnea (OSA) has been identified as a significant risk factor for stroke. However, little is known regarding the effects of OSA on the cerebrovascular wall. Using a novel rodent model of OSA we assessed the hypothesis that (1) OSA augments endothelin (ET-1) induced constrictions of cerebral arteries and (2) OSA attenuates dilations of cerebral arteries by agonist-induced nitric oxide (NO) release from the cerebrovascular endothelium. The repetitive airway closures associated with OSA lead to intermittent hypoxia/hypercapnia and reoxygenation, increased negative intrathoracic pressures, and arousals. In order to model the physiological consequences of OSA, we have chronically instrumented rats with inflatable endotracheal obstruction devices. Unanesthetized freely-ranging rats underwent 30 apneas/ hour for 8 hours/ day (sleep phase) for 1 month. During apnea pO 2 decreased from 122±3 to 67±3 mm Hg; pCO 2 increased from 43±1 to 51±1 mm Hg; pH decreased from 7.46±0.00 to 7.38±0.01; and hemoglobin O 2 saturation decreased from 94±1 to 82±1 % (n=5 and p<0.05 for each). Following 1 month of OSA blood pressure, plasma ET-1 and NO levels were similar in sham and OSA rats. Using the pressurized cerebral artery preparation, we observed a 17.5-fold increase in sensitivity to ET-1 (n=5-6, p<0.05) after 1 month of OSA. The increased sensitivity of OSA cerebral arteries to ET-1 was abolished by the ET-B receptor antagonist BQ-788 (n=6, NS). Additionally, constrictions to the ET-B specific agonist IRL-1620 were significantly greater in OSA, versus sham, cerebral arteries (n=6, p<0.05). Dilations to ATP (a P2Y 2 agonist which stimulates NO production in the endothelium) were attenuated in cerebral arteries from OSA rats by 40% (n=5-8, p<0.05). However dilations to the NO-donor MAHMA-NOnoate were similar between groups. In conclusion, 1 month of OSA results in (1) increased sensitivity of cerebral arteries to ET-1, likely through upregulation of ET-B receptors on the vascular smooth muscle and (2) decreased endothelial-derived NO production. These data suggest that OSA results in significant alterations to the cerebrovascular wall in the absence of hypertension.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要