The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA.

PLOS PATHOGENS(2019)

引用 90|浏览42
暂无评分
摘要
The biotrophic fungal pathogen Blumeria graminis causes the powdery mildew disease of cereals and grasses. We present the first crystal structure of a B. graminis effector of pathogenicity (CSEP0064/BEC1054), demonstrating it has a ribonuclease (RNase)-like fold. This effector is part of a group of RNase-like proteins (termed RALPHs) which comprise the largest set of secreted effector candidates within the B. graminis genomes. Their exceptional abundance suggests they play crucial functions during pathogenesis. We show that transgenic expression of RALPH CSEP0064/BEC1054 increases susceptibility to infection in both monocotyledonous and dicotyledonous plants. CSEP0064/BEC1054 interacts in planta with the pathogenesis-related protein PR10. The effector protein associates with total RNA and weakly with DNA. Methyl jasmonate (MeJA) levels modulate susceptibility to aniline-induced host RNA fragmentation. In planta expression of CSEP0064/BEC1054 reduces the formation of this RNA fragment. We propose CSEP0064/BEC1054 is a pseudoenzyme that binds to host ribosomes, thereby inhibiting the action of plant ribosome-inactivating proteins (RIPs) that would otherwise lead to host cell death, an unviable interaction and demise of the fungus. Author summary Powdery mildews are common plant diseases which affect important crop plants including cereals such as wheat and barley. The fungi that cause this disease are obligate biotrophs: they have an absolute requirement for living host cells which they penetrate with feeding structures called haustoria. These fungi must be highly effective at avoiding immune recognition which would lead to death of the host cell and the pathogen. We assume they do this by delivering effector proteins to the host. While several hundred secreted effectors have been described in cereal powdery mildews, it is unknown how they work. Here, we use X-ray crystallography and nuclear magnetic resonance (NMR) to determine the structure of the effector CSEP0064/BEC1054, representative of the largest class of effectors resembling RNase. We find that this effector binds nucleic acids. Expression of the effector in plants increases susceptibility to infection. Moreover, transgenic CSEP0064/BEC1054 in wheat inhibits the degradation of host rRNA induced by RIPs. We propose a novel mechanism of action for the RNase-like effectors in powdery mildews: they may act as pseudoenzymes to inhibit the host RIPs, known components of plant immune responses that lead to host cell death.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要