Team Coordination and Effectiveness in Human-Autonomy Teaming

IEEE Transactions on Human-Machine Systems(2019)

引用 53|浏览38
暂无评分
摘要
In the past, team coordination dynamics have been explored using nonlinear dynamical systems (NDS) methods, but the relationship between team coordination dynamics and team performance for all-human teams was assumed to be linear. The current study examines team coordination dynamics with an extended version of the NDS methods and assumes that its relationship with team performance for human-autonomy teams (HAT) is nonlinear. In this study, three team conditions are compared with the goals of better understanding how team coordination dynamics differ between all-human teams and HAT and how these dynamics relate to team performance and team situation awareness. Each condition was determined based on manipulation of the pilot role: in the first condition (synthetic) the pilot role was played by a synthetic agent, in the second condition (control) it was a randomly assigned participant, and in the third condition (experimenter) it was an expert who used a role specific coordination script. NDS indices revealed that synthetic teams were rigid, followed by experimenter teams, who were metastable, and control teams, who were unstable. Experimenter teams demonstrated better team effectiveness (i.e., better team performance and team situation awareness) than control and synthetic teams. Team coordination stability is related to team performance and team situation awareness in a nonlinear manner with optimal performance and situation awareness associated with metastability coupled with flexibility. This result means that future development of synthetic teams should address these coordination dynamics, specifically, rigidity in coordination.
更多
查看译文
关键词
Task analysis,Cognition,Autonomous agents,Navigation,Nonlinear dynamical systems,Vehicle dynamics,Unmanned aerial vehicles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要