Population-scale study of eRNA transcription reveals bipartite functional enhancer architecture

bioRxiv(2018)

引用 24|浏览16
暂无评分
摘要
Enhancer RNAs (eRNA) are non-coding RNAs transcribed bidirectionally from active regulatory sequences. Their expression levels correlate with the activating potentials of the enhancers, but due to their instability, eRNAs have proven difficult to quantify in large scale. To overcome this, we use capped-nascent-RNA sequencing to efficiently capture the bidirectional initiation of eRNAs. We apply this in large scale to the human lymphoblastoid cell lines from the Yoruban population, and detected nearly 75,000 eRNA transcription sites with high sensitivity and specificity. We identify genetic variants significantly associated with overall eRNA initiation levels, as well as the transcription directionality between the two divergent eRNA pairs, namely the transcription initiation and directional initiation quantitative trait loci (tiQTLs and diQTLs) respectively. High-resolution analyses of these two types of eRNA QTLs reveal distinct positions of enrichment not only at the central transcription factor (TF) binding regions but also at the flanking eRNA initiation regions, both of which are equivalently associated with mRNA expression QTLs. These two regions - the central TF binding footprint and the eRNA initiation cores - define the bipartite architecture and the function of enhancers, and may provide further insights into interpreting the significance of non-coding regulatory variants.
更多
查看译文
关键词
transcription,eRNA,gene regulation,genetic associations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要