HerGePred: Heterogeneous Network Embedding Representation for Disease Gene Prediction

IEEE Journal of Biomedical and Health Informatics(2019)

引用 49|浏览69
暂无评分
摘要
The discovery of disease-causing genes is a critical step towards understanding the nature of a disease and determining a possible cure for it. In recent years, many computational methods to identify disease genes have been proposed. However, making full use of disease-related (e.g., symptoms) and gene-related (e.g., gene ontology and protein–protein interactions) information to improve the performance of disease gene prediction is still an issue. Here, we develop a heterogeneous disease-gene-related network (HDGN) embedding representation framework for disease gene prediction (called HerGePred). Based on this framework, a low-dimensional vector representation (LVR) of the nodes in the HDGN can be obtained. Then, we propose two specific algorithms, namely, an LVR-based similarity prediction and a random walk with restart on a reconstructed heterogeneous disease-gene network (RW-RDGN), to predict disease genes with high performance. First, to validate the rationality of the framework, we analyze the similarity-based overlap distribution of disease pairs and design an experiment for disease–gene association recovery, the results of which revealed that the LVR of nodes performs well at preserving the local and global network structure of the HDGN. Then, we apply tenfold cross validation and external validation to compare our methods with other well-known disease gene prediction algorithms. The experimental results show that the RW-RDGN performs better than the state-of-the-art algorithm. The prediction results of disease candidate genes are essential for molecular mechanism investigation and experimental validation. The source codes of HerGePred and experimental data are available at https://github.com/yangkuoone/HerGePred .
更多
查看译文
关键词
Disease gene prediction,network embedding representation,heterogeneous network,network propagation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要