The GESAMP atmospheric iron deposition model intercomparison study

Biogeosciences Discussions(2018)

引用 1|浏览117
暂无评分
摘要
Abstract. This work reports on the current status of global modelling of iron (Fe) deposition fluxes and atmospheric concentrations and analyses of the differences between models, as well as between models and observations. A total of four global 3-D chemistry-transport (CTMs) and general circulation (GCMs) models have participated in this intercomparison, in the framework of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Working Group 38, The Atmospheric Input of Chemicals to the Ocean. The global total Fe (TFe) emissions strength in the models is equal to ~ 72 Tg-Fe yr−1 (38–134 Tg-Fe yr−1) from mineral dust sources and around 2.1 Tg-Fe yr−1 (1.8–2.7 Tg-Fe yr−1) from combustion processes (sum of anthropogenic combustion/biomass burning and wildfires). The mean global labile Fe (LFe) source strength in the models, considering both the primary emissions and the atmospheric processing, is calculated to be 0.7 (±0.3) Tg-Fe yr−1, accounting for mineral dust and combustion aerosols together. The multi model ensemble global TFe and LFe deposition fluxes into the global ocean are calculated to be ~ 15 Tg-Fe yr−1 and ~ 0.3 Tg-Fe yr−1, respectively. The model intercomparison analysis indicates that the representation of the atmospheric Fe cycle varies among models, in terms of both the magnitude of natural and combustion Fe emissions as well as the complexity of atmospheric processing parametrizations of Fe-containing aerosols. The model comparison with aerosol Fe observations over oceanic regions indicate that most models overestimate surface level TFe mass concentrations near the dust source regions and tend to underestimate the low concentrations observed in remote ocean regions. All models are able to simulate the tendency of higher Fe loading near and downwind from the dust source regions, with the mean normalized bias for the Northern Hemisphere (~ 14), larger than the Southern Hemisphere (~ 2.4) for the ensemble model mean. This model intercomparison and model–observation comparison study reveals two critical issues in LFe simulations that require further exploration: 1) the Fe-containing aerosol size distribution and 2) the relative contribution of dust and combustion sources of Fe to labile Fe in atmospheric aerosols over the remote oceanic regions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要