Power Electronic Devices and Systems Based on Bulk GaN Substrates

Materials Science Forum(2018)

引用 7|浏览0
暂无评分
摘要
Wide-bandgap power semiconductor devices offer enormous energy efficiency gains in a wide range of potential applications. As silicon-based semiconductors are fast approaching their performance limits for high power requirements, wide-bandgap semiconductors such as gallium nitride (GaN) and silicon carbide (SiC) with their superior electrical properties are likely candidates to replace silicon in the near future. Along with higher blocking voltages wide-bandgap semiconductors offer breakthrough relative circuit performance enabling low losses, high switching frequencies, and high temperature operation. ARPA-E’s SWITCHES program, started in 2014, set out to catalyze the development of vertical GaN devices using innovations in materials and device architectures to achieve three key aggressive targets: 1200V breakdown voltage (BV), 100A single-die diode and transistor current, and a packaged device cost of no more than ȼ10/A. The program is drawing to a close by the end of 2017 and while no individual project has yet to achieve all the targets of the program, they have made tremendous advances and technical breakthroughs in vertical device architecture and materials development. GaN crystals have been grown by the ammonothermal technique and 2-inch GaN wafers have been fabricated from them. Near theoretical, high-voltage (1700-4000V) and high current (up to 400A pulsed) vertical GaN diodes have been demonstrated along with innovative vertical GaN transistor structures capable of high voltage (800-1500V) and low RON (0.36-2.6 mΩ-cm2). The challenge of selective area doping, needed in order to move to higher voltage transistor devices has been identified. Furthermore, a roadmap has been developed that will allow high voltage/current vertical GaN devices to reach ȼ5/A to ȼ7/A, realizing functional cost parity with high voltage silicon power transistors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要