Efficient quadrature rules for subdivision surfaces in isogeometric analysis

Computer Methods in Applied Mechanics and Engineering(2018)

引用 18|浏览46
暂无评分
摘要
We introduce a new approach to numerical quadrature on geometries defined by subdivision surfaces based on quad meshes in the context of isogeometric analysis. Starting with a sparse control mesh, the subdivision process generates a sequence of finer and finer quad meshes that in the limit defines a smooth subdivision surface, which can be of any manifold topology. Traditional approaches to quadrature on such surfaces rely on per-quad integration, which is inefficient and typically also inaccurate near vertices where other than four quads meet. Instead, we explore the space of possible groupings of quads and identify the optimal macro-quads in terms of the number of quadrature points needed. We show that macro-quads consisting of quads from one or several consecutive levels of subdivision considerably reduce the cost of numerical integration. Our rules possess a tensor product structure and the underlying univariate rules are Gaussian, i.e., they require the minimum possible number of integration points in both univariate directions.
更多
查看译文
关键词
Numerical integration,Subdivision surface,Non-tensor-product splines,Gaussian quadrature rules,Isogeometric analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要