Dynamics and spatial genomics of the nascent transcriptome in single mESCs by intron seqFISH

bioRxiv(2018)

引用 3|浏览19
暂无评分
摘要
Recent single cell experiments have revealed significant heterogeneities at the levels of transcription, DNA methylation and chromosome organization in individual cells. However, existing method of profiling mRNAs effectively averages transcriptional dynamics over many hours due to hours-long life time of most mRNAs. To capture the instantaneous activity of the transcriptome that reflects the rapid regulatory changes in cells, we imaged up to 10,421 nascent transcription active sites (TAS) in single mouse embryonic stem cells using seqFISH followed by multiple rounds of single molecule FISH and immunofluorescence. We observed that nascent transcription active sites appear to be distributed on the surface of individual chromosome territories and are dispersed throughout the nucleus. In addition, there are significant variability in the number of active transcription sites in single cells, representing globally more active to quiescent states. These states interconverted on the time scale of 2 hours as determined by a single cell pulse-chase experiment. Thus, transcriptome level seqFISH experiments provide an unprecedented spatial and dynamic view of chromosome organization and global nascent transcription activity in single cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要