Picosecond Absorption Spectroscopy Of Self-Trapped Excitons And Transient Ce States In Labr3 And Labr3:Ce

PHYSICAL REVIEW B(2018)

引用 16|浏览14
暂无评分
摘要
Picosecond time-resolved optical absorption spectra induced by two-photon interband excitation of LaBr3 are reported. The spectra are similar in general characteristics to self-trapped exciton (STE) absorption previously measured in alkali halides and alkaline-earth halides. A broad ultraviolet absorption band results from excitation of the self-trapped hole within the STE. A series of infrared and red-visible bands results from excitation of the bound outer electron within the STE similar to bands found in alkali halides corresponding to different degrees of "off-center" relaxation. Induced absorption in cerium-doped LaBr3 after band-gap excitation of the host exhibits similar STE spectra, except it decays faster on the tens-of-picoseconds scale in proportion to the Ce concentration. This is attributed to dipole-dipole energy transfer from STE to Ce3+ dopant ions. The absorption spectra were also measured after direct excitation of the Ce3+ ions with sufficient intensity to drive two-and three-photon resonantly enhanced excitation. In this case, the spectrum attributed to STEs created adjacent to Ce3+ ions decays in 1 ps suggesting dipole-dipole transfer from the nearest-neighbor separation. A transient absorption band at 2.1 eV growing with Ce concentration is found and attributed to a charge-transfer excitation of the Ce3+* excited state responsible for scintillation in LaBr3:Ce crystals. This study concludes that the energy transport from host to activator responsible for the scintillation of LaBr3:Ce proceeds by STE creation and dipole-dipole transfer more than by sequential trapping of holes and electrons on Ce3+ ions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要