Integrated optimization of actuators and structural topology of piezoelectric composite structures for static shape control

Computer Methods in Applied Mechanics and Engineering(2018)

引用 33|浏览4
暂无评分
摘要
This paper investigates a new integrated optimization method for laminated composite structures with piezoelectric patch actuators. Three kinds of design variables, i.e. the actuators’ locations, electrical voltages applied on piezoelectric patches and host structural pseudo-densities, are simultaneously optimized to improve the overall deformation precision. To freely place piezoelectric actuator on the host structure surface regardless of coincident finite element in classic lamination theory (CLT), the multi-point constraints (MPC) method is used here to simulate the perfect bonding between actuator layer and host layer, which inherits the advantages of avoidance of remeshing process analytical sensitivity as well as efficient lamination description during the movement of actuators in optimization iterations. For applying to spatially complex shape control, a modified shape error function based on the relative error between computed and desired surfaces is used. The finite circle method (FCM) is implemented to prevent the overlaps among the actuators and those between actuators and boundaries of the global design domain. Finally, numerical examples with plane or curved host structure are tested and discussed to demonstrate the validity and efficiency of this method.
更多
查看译文
关键词
Integrated optimization,Piezoelectric composite structures,Multi-point constraints,Desired deformations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要