3D printed microfluidics and microelectronics

Microelectronic Engineering(2018)

引用 163|浏览31
暂无评分
摘要
Submillimeter-scale domains offer wide-ranging benefits for chemical and biological fields, which have motivated researchers to develop a diversity of strategies for manufacturing integrated microfluidic systems. Historically, microfluidic device construction has predominantly relied on micromachining technologies that are rooted in the semiconductor and microelectromechanical systems (MEMS) industries. These methodologies have enabled microfluidic platforms to be fabricated with fully integrated microelectronics – a critical requirement for applications such as electrophoresis and dielectrophoresis (DEP), surface acoustic wave (SAW) actuation, digital microfluidics (e.g., via electrowetting-on-dielectric (EWOD) phenomena), and on-chip electrochemical detection. Despite the distinguishing capabilities afforded by conventional microfabrication protocols, a number of inherent limitations have given rise to increasing interest in alternative approaches for microdevice construction in the form of additive manufacturing or “three-dimensional (3D) printing”. Here we review recent progress in the development of both 3D printed microfluidics and 3D printed microelectronics. We evaluate the distinctive benefits and constraints associated with emerging 3D printing technologies with respect to the fabrication of both microfluidic and microelectronic systems. Lastly, we examine the potential use of 3D printing-based approaches for manufacturing microfluidic devices with integrated microelectronics.
更多
查看译文
关键词
Additive manufacturing,3D printing,Microfluidics,Microelectronics,Lab-on-a-chip
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要