Determinants of target prioritization and regulatory hierarchy for the bacterial small RNA SgrS

bioRxiv(2017)

引用 21|浏览10
暂无评分
摘要
The mechanisms by which small RNA (sRNA) regulators select and prioritize target mRNAs remain poorly understood, but serve to promote efficient responses to environmental cues and stresses. We sought to uncover mechanisms establishing regulatory hierarchy for a model sRNA, SgrS, found in enteric bacteria and produced under conditions of metabolic stress when sugar transport and metabolism are unbalanced. SgrS post-transcriptionally controls a nine-gene regulon to restore growth and homeostasis under stress conditions. An in vivo reporter system was used to quantify SgrS-dependent regulation of target genes and established that SgrS exhibits a clear preference for certain targets, and regulates those targets efficiently even at low SgrS levels. Higher SgrS concentrations are required to regulate other targets. The position of particular targets in the regulatory hierarchy is not well-correlated with the predicted thermodynamic stability of SgrS-mRNA interactions or the SgrS-mRNA binding affinity as measured in vitro. Detailed analyses of SgrS interaction with asd mRNA demonstrate that SgrS binds cooperatively to two sites and remodels asd mRNA secondary structure. SgrS binding at both sites increases the efficiency of asd mRNA regulation compared to mutants that have only a single SgrS binding site. Our results suggest that sRNA selection of target mRNAs and regulatory hierarchy are influenced by several molecular features. The sRNA-mRNA interaction, including the number and position of sRNA binding sites on the mRNA and cofactors like the RNA chaperone Hfq seem to tune the efficiency of regulation of specific mRNA targets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要