Beyond pseudotime: Following T-cell maturation in single-cell RNAseq time series

bioRxiv(2017)

引用 3|浏览17
暂无评分
摘要
Cellular development has traditionally been described as a series of transitions between discrete cell states, such as the sequence of double negative, double positive and single positive stages in T-cell development. Recent advances in single cell transcriptomics suggest an alternative description of development, in which cells follow continuous transcriptomic trajectories. A cell’s state along such a trajectory can be captured with pseudotemporal ordering, which however is not able to predict development of the system in real time. We present pseudodynamics, a mathematical framework that integrates time-series and genetic knock-out information with such transcriptome-based descriptions in order to describe and analyze the real-time evolution of the system. Pseudodynamics models the distribution of a cell population across a continuous cell state coordinate over time based on a stochastic differential equation along developmental trajectories and random switching between trajectories in branching regions. To illustrate feasibility, we use pseudodynamics to estimate cell-state-dependent growth and differentiation of thymic T-cell development. The model approximates a developmental potential function (Waddington’s landscape) and suggests that thymic T-cell development is biphasic and not strictly deterministic before beta-selection. Pseudodynamics generalizes classical discrete population models to continuous states and thus opens possibilities such as probabilistic model selection to single cell genomics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要