Robustness encoded across essential and accessory replicons in an ecologically versatile bacterium

bioRxiv(2018)

引用 6|浏览33
暂无评分
摘要
Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which genotype-phenotype relationships are influenced by large-scale genomic alterations has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate contributions of chromosomal genes to fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modelling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone misses over a quarter of wild type metabolism. This work highlights the strong functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modelling can be used together to yield insights not obtainable by either method alone.
更多
查看译文
关键词
genetic interactions,synthetic lethality,systems biology,Tn-seq,constraint based modelling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要