Thiol-linked alkylation for the metabolic sequencing of RNA

bioRxiv(2017)

引用 3|浏览11
暂无评分
摘要
Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry- based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s 4 U)- incorporation in RNA species at single-nucleotide resolution. In combination with well- established metabolic RNA labeling protocols and coupled to standard, low-input, high- throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript- specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and we provide quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post- transcriptional gene regulatory pathways initiated by microRNAs and N 6 -methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要