Multi-Scale Carbon (Micro/Nano) Fiber Reinforcement of Polyetheretherketone Using High Shear Melt-Processing

FIBERS(2017)

引用 3|浏览1
暂无评分
摘要
Fiber-reinforced polymer matrix composites offer lightweight, high mechanical performance but have required much effort to achieve good fiber-matrix adhesion and uniform distribution, and generally suffer from low impact resistance. In this work, a uniform, high shear melt-processing method was used to prepare carbon fiber (CF) reinforced polyetheretherketone (PEEK), carbon nanofiber (CNF) reinforced PEEK, and multi-scale CF and CNF reinforced PEEK composites. Scanning electron microscopy images show good fiber distribution and fiber-matrix interaction, as well as surface crystallization of PEEK from the fiber surfaces. Tensile modulus and strength increase most significantly with the addition of CF but with a loss in ductility. The multi-scale composite of CF-CNF-PEEK displays the stiffening effect from the CF and retains more ductility due to the CNF. Further, the CF-CNF-PEEK composite displays the highest impact energy absorption. This study shows that good mixing of CFs and CNFs is achievable in PEEK using a uniform, high shear processing method that can easily produce intricate shapes and provides a stiff, high impact energy absorption multi-scale carbon fiber-reinforced composite.
更多
查看译文
关键词
fiber-reinforced polymer composites,carbon nanofiber,high performance carbon fiber,new processing methods for composites,multi-scale-reinforced polymer composites,surface crystallization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要