Time-Domain Stability Of Parametric Synchronization In A Spin-Torque Nano-Oscillator Based On A Magnetic Tunnel Junction

PHYSICAL REVIEW B(2017)

引用 12|浏览21
暂无评分
摘要
We report on time-domain stability of the parametric synchronization in a spin-torque nano-oscillator (STNO) based on a magnetic tunnel junction. Time-domain measurements of the instantaneous frequency (f(i)) of a parametrically synchronized STNO showrandom short-term unlocking of the STNO signal for low injected radio-frequency (RF) power, which cannot be revealed in time-averaged frequency domain measurements. Macrospin simulations reproduce the experimental results and reveal that the random unlocking during synchronization is driven by thermal fluctuations. We show that by using a high injected RF power, random unlocking of the STNO can be avoided. However, a perfect synchronization characterized by complete suppression of phase noise, so-called phase noise squeezing, can be obtained only at a significantly higher RF power. Our macrospin simulations suggest that a lower temperature and a higher positive ratio of the fieldlike torque to the spin transfer torque reduce the threshold RF power required for phase noise squeezing under parametric synchronization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要