A generic multiresolution preconditioner for sparse symmetric systems

arXiv: Numerical Analysis(2017)

引用 23|浏览12
暂无评分
摘要
We introduce a new general purpose multiresolution preconditioner for symmetric linear systems. Most existing multiresolution preconditioners use some standard wavelet basis that relies on knowledge of the geometry of the underlying domain. In constrast, based on the recently proposed Multiresolution Matrix Factorization (MMF) algorithm, we construct a preconditioner that discovers a custom wavelet basis adapted to the given linear system without making any geometric assumptions. Some advantages of the new approach are fast preconditioner-vector products, invariance to the ordering of the rows/columns, and the ability to handle systems of any size. Numerical experiments on finite difference discretizations of model PDEs and off-the-shelf matrices illustrate the effectiveness of the MMF preconditioner.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要