Cooperative CO2 adsorption promotes high CO2 adsorption density over wide optimal nanopore range

ADSORPTION SCIENCE & TECHNOLOGY(2018)

引用 33|浏览31
暂无评分
摘要
Separation of CO2 based on adsorption, absorption, and membrane techniques is a crucial technology necessary to address current global warming issues. Porous media are essential for all these approaches and understanding the nature of the porous structure is important for achieving highly efficient CO2 adsorption. Porous carbon is considered to be a suitable porous media for investigating the fundamental mechanisms of CO2 adsorption, because of its simple morphology and its availability in a wide range of well-defined pore sizes. In this study, we investigated the dependence of CO2 adsorption on pore structures such as pore size, volume, and specific surface area. We also studied slit-shaped and cylindrical pore morphologies based on activated carbon fibers of 0.6-1.7nm and carbon nanotubes of 1-5nm, respectively, with relatively uniform structures. Porous media with larger specific surface areas gave higher CO2 adsorption densities than those of media having larger pore volumes. Narrower pores gave higher adsorption densities because of deep adsorption potential wells. However, at a higher pressure CO2 adsorption densities increased again in nanopores including micropores and small mesopores. The optimal pore size ranges of CO2 adsorption in the slit-shaped and cylindrical carbon pores were 0.4-1.2 and 1.0-2.0nm, respectively, although a high adsorption density was only expected for the narrow carbon nanopores from adsorption potentials. The wider nanopore ranges than expected nanopore ranges are reasonable when considering intermolecular interactions in addition to CO2-carbon pore interactions. Therefore, cooperative adsorption among CO2 in relatively narrow nanopores can allow for high density and high capacity adsorption.
更多
查看译文
关键词
CO2 adsorption,cooperative adsorption,optimal pore size,carbon nanotube,activated carbon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要